
-?ozW- -1SLhCH IN DISTRIOUTED PRO&WUh IS ~
IMWUUION SYSTEMS VOLU.. (U) 90 LS INC CRNWIDGE
M H CFORSDICK ET AL. RUG 08 IIN-5901-VOL-1

WSCISSIFIED inC-TRS6-59-OL-1 F30601-6±-C-0256 F/0 12/4 ML

mossomommomhhhmu
-"'III"'."NE

Wo - 1

11111.25 Ih~
III'.- - ~1.6_____

0

K ;,, X-

OR:i

.... ..

44-f

74 C'r~ n ~ ' J~

r ,-M

LIN -;AIU
L AM, w-

xl

I. Nll

o p

RESEARCH IN DISTRIBUTED PERSONAL
COMPUTER-BASED INFORMATION SYSTEMS

Vol I (of two)

Harry C. Forsdick
Robert H. Thomas

Contractor: BBN Laboratories Inc.
Contract Number: F30602-81-C-0256
Program Code Number: XTlO
Effective Date of Contract: 2 July 1981
Contract Expiration Date; 14 January 1985
Short Title of Work: Research in Distributed Personal Computer-

Based Information Systems
Period of Work Covered: April 84 - October 84

Principal Investigator: Robert H. Thomas
Phone: (617) 873-3483

RADC Project Engineer: Thomas F. Lawrence
Phone: (315) 330-2158

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
and was monitored by Thomas F. Lawrence, RADC (COTD),
Griffiss AFB NY 13441-5700 under Contract F30602-81-C-0256.

UNCLASSIFIED gr, - -

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE O. 070408

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for public release;
Db1 ,ECLASSIFICATION / DOWNGRADING SCHEDULE di tribu t ion unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

5901 RADC-TR-88-159, Vol I (of two)

64. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

BBN Laboratories Inc. (ifauicable) Rome Air Development Center (COTD)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

10 Moulton Street
Cambridge MA 02238-0001 Griffisa AFB NY 13441-5700

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANzATioN Defense Advanced ff appkcab)

Research Projects Agency j, F30602-81-C-0256

8c. ADDRESS (City, Stane, end ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.Arlington VA 22304 62708E D224 01 01

11. TITLE (kicude Security Clsfication)

RESEARCH IN DISTRIBUTED PERSONAL COMPUTER-BASED INFORMATION SYSTEMS

12. PERSONAL AUTHOR(S)
Harry C. Forsdick, Robert H. Thomas
13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT

Final I FROM Apr 84 TO Oct 84 August 1988 108
16. SUPPLEMENTARY NOTATION
N/A

17. COSATI CODES 1. SUBJECT TERMS (Conthnue on rwrse if noceuary and identify by block number)

FIELD GROUP SUB-GROUP Multi Media Message System

07 Distributed System
Distributed Personal Computer Environment

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The primary focus of the personal computer task area is the development of an electronic
message system called Diamond, which will run in a distributed personal computer environment.
The message system will: support a user interface that exploits the capabilities of advance
single-user computers, handle messages that contain data other than text, have a distributed
architecture, operate in a secure fashion, permit use from a variety of user access points,
and have a transportable implementation.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
C UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. Q DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Thomas F. Lawrence (315) 330-2158 RADC (COTD)

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. SUMMARY OF CONTRACT ACTIVITY 3

2.1 Project Overview 3
2.1.1 Distributed Personal Computer Systems 3
2.1.2 Support for Strategic C3 Experiment 5
2.1.3 Hermes Maintenance 5

2.2 Summary of Contract Accomplishments 8

3. OVERVIEW OF RECENT ACTIVITY 9

4. THE DIAMOND MULTIMEDIA MESSAGE SYSTEM 11

4.1 Porting Diamond to the Sun Workstation 13
4.1.1 PCode-to-85000 Code Peephole Optimizer 13
4.1.2 Database Server 14
4.1.3 First Release of Diamond on Sun Workstation 14

4.2 Performance Analysis of Diamond 15
4.2.1 Performance Analysis Tools Dric 16
4.2.2 Experiments and Results,.Op. 17

4.3 Authentication Manager 18
4.3.1 Workstation Authentication 18
4.3.2 Access Control Within the Authentication Manager 19
4.3.3 Authentication Manager Extensions 20
4.3.4 Port to the Sun Workstation 20
4.3.5 Review of Diamond Access Control Accesion. For

4.4 Document Manager -TISGRA&I 21
4.5 Vocoder Manager 23
4.8 Access Point nannounced]24
4.7 Multimedia Editor: EditDoc 25

4.7.1 Image Editing 25
4.7.2 Spread sheets / Charts 26
4.7.3 Text I .,.ributiol 29
4.7.4 Graphics 30
4.7.5 Clipboard AvnilabilitY Codes 30
4.7.6 Miscellaneous r Avai. and/or 31Dist special

4.8 Import / Export Manager 31
4.9 Papers. Documentation, Meetings, and Presentations 32

5. THE JERICHO JADE SYSTEM 33

5.1 Image Manipulating Operations 33
5.2 Compatibility with Sun Workstations 38

6. THE JADE PROGRAMMING ENVIRONMENT 43

6.1 Network protocols and IPC 43
6.2 Software State Database 44

6.2.1 Dependencies 45
6.2.2 Using Dependencies 46

6.3 IPC Monitoring Facility 47
6.3.1 IPC Monitor Scenario 48

7. JERICHO INTERLISP 61

7.1 Active Values 61

8. ALEPH 65

8.1 Application of Active Values 85
8.2 Code Presenter 69

9. HERMES MAINTENANCE 77

ii

LIST OF FIGURES

Figure 1. The Distributed Architecture of Diamond 12
Figure 2. A Spread sheet / Chart in Viewing Form 27
Figure 3. A Spread sheet / Chart in Editing Form 28
Figure 4. Scaling of BitMap Images 34
Figure 5. Reduction and Enlargement of an Image, Aspect Ratio Preserved 35
Fieure 6. Reduction and Enlargement of an Image, Arbitrary Aspect Ratio 38
Figure 7. The effect of a horizontal shearing operation. 37
Figure 8. The effect of rotating an image through a small angle. 39
Figure 9. DocStruc ReadValue request 52
Figure 10. DocStruc ReadValue request - message description 53
Figure 11. DocStruc ReadValue request - detailed information 54
Figure 12. AuthBindingOf request 55
Figure 13. AuthBindingOf response 56
Figure 14. DocStruc ReadValue response 57
Figure 15. DocStruc ReadValue response - detailed information 58
Figure 16. AtomicImage ReadValue request 59
Figure 17. AtomicImage ReadValue response 60
Figure 18. Transforming Old into New 68
Figure 19. The reverse transformation 70
Figure 20. Code segment parameterized by variables OBJECT and OPERATOR 71
Figure 21. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR 72

unbound
Figure 22. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR 73

bound to TIMES
Figure 23. Code segment with OBJECT unbound and OPERATOR bound to TIMES 74

W11

1. INTRODUCTION

This is the final technical report for Contract No. F30602-81-C-0256, entitled

"Research in Distributed Personal Computer Based Information Systems." It summarizes

the major accomplishments of the contract. In addition, it reports on work done

between April 1984 and October 1984. Work done before April 1984 is described in

contract semi-annual Reports 1 through 5, BBN Reports 4924, 5301, 5395, 5722 and

5723.

The report is organized as follows. The contract objectives and the major

results of the contract effort are summarized in Section 2. Sections 3 through

9 report on contract activity during the final 6 months of the contract. Section

4 discusses work on the Diamond multimedia system and related activities. Work on

Jade, the Jericho Pascal operating system, is described in Section 5. Section

6 presents our activities related to the development of the Jade programming

environment. Work on the Interlisp system for the Jericho computer is described in

Section 7. Section 8 discusses our work on Aleph. Section 9 describes recent Hermes

maintenance activity.

... =n - -, --m m mmmm I II I I1

2. SINRUARY OF CONTRACT ACTIVIIY

Section 2.1 summarizes the objectives of the work done under the contract, and

Section 2.2 summarizes our major accomplishments.

2.1 Project Overview

The tasks for this project fell into three broad areas:

1. Research in distributed personal computer systems;

2. Support for the Strategic C3 Experiment;

3. Maintenance of the Hermes electronic message system.

The project objectives in each of these areas are reviewed briefly below.

2.1.1 Distributed Personal Computer Systems

The primary focus of the personal computer task area was the development of an

electronic message system, called Diamond, which was to run in a distributed personal

computer environment. The Diamond message system was designed to:

o Support a user interface that exploits the capabilities of advanced single-
user computers;

o Handle messages that contain data other than text (e.g., images, line

drawing--, rpeech);

o Have a distributed architecture;

o Operate in a secure fashion;

o Permit use from a variety of types of user access points;

o Have a transportable implementation.

The personal computers to be used in the initial implementation of the Diamond

message system were Jericho computer systems. The portability of Diamond was to be

demonstrated by moving the system to another comparable personal computer system.

It was expected that development of the message system would require work in a

number of supporting areas, including:

3

1. Basic System Support.

Diamond was developed as an application program that executes on a
collection of personal computers and shared resource computers
interconnected by a high bandwidth local network. Diamond, as well as
other applications, requires the support of "operating system" level software.
The purpose of this software is to make the Jericho personal computer
usable as a sophisticated, autonomous, single-user computer system.
Development of the basic * system support involved the design and
implementation of storage management functions, bit map display functions, a
multiple process capability, an interprocess communication facility, and
support for the standard DoD network communication protocols.

2. Input/Output Support for a Variety of Data Types.

The Diamond message system was designed to handle messages composed of a
number of types of information, including text, facsimile, graphics, and
speech. This capability for multiple media communication required the
development of software to support the input and output of these different
types of data, and, in some cases (speech, sound and facsimile), system
engineering to interface the personal computer systems with hardware
required for the input/output of this data.

3. Distributed System Support.

Diamond was designed to execute on a distributed system architecture.
Diamond and other applications developed for this environment require
supporting software that enables personal computers to function effectively
in a multiple-computer network environment. The supporting software
required included: a network interprocess communication facility, a
distributed file system supported by personal computer storage resources
and dedicated file server computer resources, means for accessing devices
that are remote from a personal computer as if they were local, a user
authentication mechanism, and access control mechanisms to provide for
controlled sharing in a distributed environment. The supporting software
runs in part on the personal computers, and in part on the shared-
resource computers.

4, Programming Language Support.

The Pascal programming language was used for much of the initial
programming required for the Diamond message system development. In
addition, it was expected that InterLisp would be used for experimentation
and research in the user interface issues. Therefore, a certain amount of
effort was required to ensure that the implementations of Paseal and
InterLisp for the Jericho computer and their supporting environments are
adequate. Furthermore, it was felt important that software modules written
in Pascal and InterLisp be able to be used together in personal computer
based systems such as Diamond. When the project began, this sort of
interoperability was not possible, and it was not clear to what extent it
could be achieved.

4

5. Programming Environments

Diamond was expected to be a reasonably large system. It would be built by
a team of implementers, of which each member would use a personal
cor .ter for software development. To facilitate implementation of systems
to be built like Diamond, we planned to design, implement, and experiment
with an application development environment, called the Jade environment.
The Jade environment was intended to support the construction of
distributed application programs and to be capable of supporting
programming projects large enough to require many programmers, each
supported by a personal computer.

We also planned to experiment with new programming environment, called
Aleph, to explore extensions to the Interlisp environment that exploit
features unique to personal computers of the Jericho class. This was to
involve experimental investigation in the areas of graphical debugging,
facilitation of routine bookkeeping activities, techniques for presenting
multiple views of systems, vocal annotation of textual documents, and
content- addressed documentation.

2.1.2 Support for Strategic C3 Experiment

The objective of work in this area was to support the Strategic C3 Experiment, a

technology transfer and evaluation project conducted by DARPA and the Strategic Air

Command. A number of contractors worked on this experiment with ARPA and SAC.

Our role was to adapt the Hermes electronic message system to the needs of SAC users

participating in the experiment.

In particular, we worked to:

1. Modify Hermes so that it can operate with a full-screen editor, such as
EMACS or WE, in order to provide full-screen editing and composing of draft
messages as an integrated Hermes functicn.

2. Extend the data management capabilities of Hermes to provide a template-
driven report generator capable of summarizing the information contained in
groups of message/records.

3. Investigate the problem of software aids for scheduling personnel and
equipment. Develop algorithms and experimental software to support these
scheduling tasks and experimentally study user interface and implementation
issues.

2.1.3 Hermes Maintenance

The objective of this task was to provide software maintenance for the Hermes

electronic message system. This included correcting problems that would prevent

effective use of Hermes, should any arise, installing Hermes on new hosts at the

nnun mnln E~ i i m u l m ~ i I5

direction of the ARPA office, and making improvements to the Hermes software.

2.2 Summary of Contract Accomplishments

Some of our accomplishments during the contract were the following:

" The Diamond multimedia message system was designed, implemented, and
successfully demonstrated. Diamond currently allows text, graphics, images,
speech, electronic spread sheets and charts to be combined into a single
integrated document or message. Diamond is implemented as a distributed
system which runs on an architecture that includes powerful single user
workstations and shared server computers interconnected by a high
performance network. Diamond has been in use by the project team for over
a year, and will be available for use by others on commercially available
hardwarA in the near future.

o The feasibility of transporting the Diamond system from a hardware base of
Jericho workstations, upon which it was originally implemented, to other
comparable hardware was demonstrated by transporting most of the Diamond
implementation to a hardware base of Sun Workstations.

o An approach to permit programs written in Interlisp and in Pascal to run
simultaneously on a Jericho computer was designed and enough of the design
was implemented to demonstrate the feasibility of the approach. This
approach is documented in BBN Report No. 5287, "Language Interoperability
on Jericho."

o A Software State Database system was designed and implemented. This
system facilitates software development in an environment where many
machines are used to support many developers working on a project. The
system maintains information on the software modules which make up the
system under development. Information maintained about a module includes
where (which machine) the most recent version of the file for the module
resides, the person who last worked on the module, whether the module is
currently being worked upon and by whom, other modules which depend
upon the module, other modules upon which the module depends, and so
forth. The system provides a number of facilities including convenient
means for installing new versions of modules, checking modules out to work
on, and distributing the latest versions of software to selected machines.

o A facility for monitoring the execution of distributed application programs
was designed and implemented. The facility is designed to serve both as an
aid for debugging distributed programs and as a means for demonstrating
them. The facility makes it possible for a user to "watch" the execution of
a distributed program at a number of levels of details.

o We participated with other DARPA contractors in the development of
protocols that support transmission of multimedia documents among hosts in
the DoD internetwork. These protocols make it possible for the users of a
Diamond cluster to communicate over the internet with users of other
Diamond clusters or of other multimedia message systems.

o The Jericho INTERLISP system was successfully ported from INTERLISP-10 and

6

is in active use by the Al community at BBN. The system incorporates both
reference counting and compacting garbage collection, bitmapped graphic in
color and in black and white, and multiple-processing capability.

o We designed and implemented a Content-Addressed Documentation capability
called "The INTERLISP Advertiser", and we provided the following programming
tools: Directory and File Browsers, File and Code Comparison Presenters,
Graphical Debugger, and Apropos and Indexing facilities.

o A number of modifications to the Hermes message system were made to
support the Strategic C3 experiment. The principal modifications were to
integrate the EMACS screen editor into Hermes in order to provide a full-
screen editing capability for messages, and to extend the Hermes data
management capabilities to support template-driven report generation.
These modifications were integrated into the standard distribution version of
Hermes, making them available to all Hermes users.

o The Hermes message system was maintained for the period of the contract.
As part of this effort, Hermes was modified to operate in the DoD internet as
part of the ARPANET transition for NCP to TCP; the Hermes distribution and
installation procedures were simplified and documented so that systems
personnel at Hermes sites could install new versions of the system wjlY no
direct involvement by BBN personnel; a number of minor enhancements were
made to Hermes; and numerous minor problems and bugs were corrected.

7

3. OVERVIEW OF RECENT AuIVITY

Sections 4 through 9 report work done during the last six months of the

contract. This section summarizes project activity during that period.

Our major accomplishments during this period include the following.

o The Diamond multimedia document editor was successfully ported from
Jericho to the Sun workstation early in the reporting period. Since we
expected that the editor would be one of the more difficult parts of Diamond
to port, this success gave us confidence that the porting strategy chosen
was a good one.

o The Diamond multimedia editor was installed on the Sun workstations in the
DARPA office. Draft documentation on the use of the editor was prepared
and delivered to DARPA.

o After porting the multimedia editor, most of the other parts of Diamond have
been successfully ported to the Sun workstation. The components ported
include the interhost interprocess communication facility used by Diamond,
the Diamond Access Point and all of the Access Point tools, the Document
Manager, and the Authentication Manager.

o As part of an effort to understand and improve the performance of Diamond,
we developed a number of performance monitoring tools which we used to
conduct a series of performance measurement experiments on Diamond.
After analyzing the results of the experiments, we were able to identify a
number of performance bottlenecks, and eliminate many of them.

o The notion of workstation authentication was added to the Diamond
Authentication Manager. Workstation authentication provides a means for a
workstation to authenticate all of its processes in a single interaction with
the Authentication Manager. The Diamond Access Point was modified to make
use of workstation authentication. Use of workstation authentication results
in a significant improvement in interactive responsiveness for Access Point
operations that require the creation of a new Access Point process since
there is no need to explicitly authenticate the new process by means of an
interaction with the Authentication Manager.

o The Authentication Manager was improved by adding access control to the
operations it performs.

o A means for permitting a number of Diamond users to serially share a single
vocoding device was developed. A Vocoder Manager process, which manages
the vocoder and an "intelligent" modem, was developed to support this.
When a user at an Access Point needs to use a vocoder, the Access Point
makes a request of the Vocoder Manager. If the vocoder is not in use, the
Vocoder Manager uses the modem to place a telephone call to the user's
office. After the call is established, the telephone circuit is used as the
path between the user and the vocoder.

o The EditDoc multimedia editor has been improved in a number of ways. The

,, , lniimn m mmi i mu l H ~pmm la 9

notion of a clipboard has been implemented; a user can use the clipboard to
$cut" parts of a document and to "paste" them into other documents (or
into another part the same document). Support for electronic spread sheets
as a media type has been added; spread sheet data can be represented in
tabular form or in a variety of chart forms or in a combination of both
tabular and chart forms. The text handling capabilities of EditDoc have
been improved to support dynamic formatting of text as it is entered and
edited; in addition, the- options for formatting text have been greatly
expanded. The image editing and graphics editing capabilities of the editor
have also been enhanced.

o The Software State Database System, which is part of the Jade environment,
has been improved in a number of ways. These improvements include: the
ability to recognize dependencies among files in the data base; the use of
dependency information to check the consistency of operations (such as the
installation of modified modules); support for moving modules back and forth
between private software development environments and the public software
repository; and, the maintenance of creation (write) dates for each module
being maintained by the system. In addition, the system has been made
significantly more robust.

o The initial implementation of the IPC Monitoring Facility, which is a part of
the Jade environment, has been completed, and it has been released for
general use within the project.

o We implemented a version of Active Values, which provide a way to invoke a
function when the value of a datum is set or accessed. This opens the way
for the incorporation of Object Oriented programming paradigms in Jericho
INTERLISP.

o We designed and implemented an application of Active Values that allows
users to monitor and visualize the changes that occur in any given datum as
a consequence of program activity or editing. We also improved the Code
Presenter and the Graphical Debugger.

o We attended the IFIP 6.5 Working Conference on Computer Message Systems
held in May 1984 at Nottingham England and presented a paper on Diamond
titled "Initial Experience with Multimedia Documents in Diamond".

These items, and others, are described in the following sections.

10

4L THE DIAMOND MULTIMEDIA :MESSAGE SYSTEM

Diamond is a distributed system implemented by a variety of components which

together provide a single coherent service. The components of Diamond are:

" User Access Point: The user's main contact with Diamond. The Access Point
is composed of several tools including:

* Coordinator: All of the actions of the Access Point are directed by
this tool. The user can always inquire about the state of Diamond by
interacting with the Coordinator.

* Document Presenter/Editor: Documents are viewed and composed using
this tool. The Document Editor embodies all of the protocols concerning
Document and Atomic Object Representations.

Folder Presenter: Folders of documents and other folders are viewed
and manipulated by the Folder Presenter. This tool also interacts with
the Document Presenter/Editor tool to show or compose documents.

User/Group Registry Presenter: The User and Group Databases (see
below) can be examined and modified using this tool.

o Authentication Manager: This component maintains information about
authenticated users and processes of a Diamond cluster as well as long term
information about user preferences and groups of users.

o Document Manager: Documents and folders of documents and other folders
are managed by this component. When a user saves a document, the
Document Manager accepts the document and stores it in a Folder for later
retrieval.

o Device Managers: Various devices such as Image Scanners and Printers are
managed by Device Managers.

o Import/Export Manager: Documents sent to recipients outside a Diamond
cluster are Exported by this component. Likewise, documents originating
outside a cluster which are addressed to a recipient supported by the
cluster are imported by the Import/Export Manager. This component takes
care of any protocol conversions that may have to occur between the
standard DARPA Internet Multimedia Protocol and the protocols used
internally by Diamond.

o Internet Gateway: Communication with hosts on the DARPA Internet is done
by use of the Internet Gateway.

Figure 1 illustrates the architecture of a Diamond cluster.

11

Diamond Distribited Architecture

Documnt AUiMnIUCOLIM Docuxent Au~mwncation

SCW MW"

Figure ~~~~ ~ -1.] The Ditrbue Arhtcarmfimn

12twa

4.1 Porting Diamond to the Sun Workstation

We have successfully ported the EditDoc multimedia editor from Jericho to the

Sun workstation. EditDoc running on a Sun was demonstrated at BBN to DARPA in mid

April. The version that runs on the Sun is identical to the version that runs on

Jericho. This version of EditDoc has been installed on the Sun Workstations in the

DARPA/IPTO office. Preliminary documentation on the use of EditDoc has been

prepared and delivered to DARPA.

Work has progressed on porting the rest of Diamond to the Sun workstation. The

following sections describe that work.

4.1.1 PCode-to-68000 Code Peephole Optimizer

The major work done on the PCode translator during this reporting period

beyond the correction of bugs as they were discovered was the addition of a peephole

code optimizer. The optimizer makes a pass over the generated code looking for code

sequences which can be transformed into better code sequences. Ordinarily, a

peephole optimizer functions by limiting the context within which it operates to a

small number of lines of output code. This optimizer, however, operates on the .entire

body of a procedure.

The first step in making this change was to modify the code generator output

format from strings to a more easily processed form. Then the generated code was

examined manually looking for bad code sequences, and transformations were devised

to improve them. The transformations fall into a relatively small number of categories:

1. Choosing the best way to load constants into registers and variables.

2. Adding, subtracting, and comparing small constants.

3. Condensing chains of logical operations.

4. Eliminating unreachable code.

5. Testing booleans in packed records.

6. Using to memory operations where possible.

7. Eliminating eliminating superfluous TST and CMIP instructions.

8. Using word and byte instructions were possible.

13

9. Using short form branches were possible.

A total of 27 transformation have been implemented which result in a code size

reduction of about seven percent. Code speed improvement has not been measured,

but several of the transformations produce substantial improvement in the loop

increment and testing code.

4.1.2 Database Server

One of the biggest differences between the programming environments of the Sun

and the Jericho is the per-process address space on the Sun versus the single

address space for all processes on the Jericho. Memory sharing on the Jericho allows

very wide-band communication to be implemented efficiently. Several Diamond servers

(the Document Manager and the Authentication Manager) made use of this facility to

communicate with sub-processes which were spawned to handle single requests. In

particular, these servers made use of several shared, long-term, persistent databases.

Access to the databases was synchronized by the use of semaphores, but changes were

propagated automatically since there was only one copy of the database in memory,

directly reflecting the copy of the database on disk.

In order to allow multiple processes to share the same database on the Sun, we

developed a single database server which maintains a list of currently open database

files. It handles database requests (Find, Insert, Delete) from processes on the same

machine. The procedural interface for contacting the database server is exactly the

same as the interface for directly dealing with the database file. This has minimized

the changes necessary to programs using the database facility. The overhead in

accessing a database entry managed by the server (Jade IPC, copying of data) is

obviously larger than using shared memory but is acceptable, given the way the

database is used. A typical Document Manager or Authentication Manager operation

will access or update only a few entries. Inter-machine communication costs far

outweigh the additional intra-machine communication imposed by the database server

approach.

The database server is being used on both the Jericho and the Sun.

4.1.3 First Release of Diamond on Sun Workstation

By the end of the reporting period we had ported the core of Diamond to the

14

Sun Workstation and have demonstrated that the basic operations of Diamond can now

be performed on the Sun Workstation.

The components that have been ported to the Sun to date are:

o Access Point and Access Point tools:

EditDoc
Coordinator
ShowFolder
ShowRegistry.

o Document Manager

o Authentication Manager

Components remaining to be ported are;

o Import/Export Manager

o Scanner Manager

o Voice Manager

In addition, a Printer Manager will have to be written once a "standard" Laser Printer

(or set of printers) has been chosen. Since one of the first Diamor.d installations is

expected to be in the ADDCOMPE testbed, it is likely that (one of) the standard

printer(s) will be the printer chosen for use in ADDCOMPE.

In the next section we describe some performance improvements that have been

made to the version of Diamond running on the Jericho computer system. The current

version of Diamond on the Sun has some additional performance problems which will

have to be solved in the future.

4.2 Performance Analysis of Diamond

During this reporting period, a substantial amount of work has been done on

measuring, analyzing, and improving the performance of various parts of the Diamond

system. The work falls into three broad categories. First, a collection of performance

monitoring and analysis tools was developed, and various parts of Diamond were

instrumented to use these tools. Second, a series of controlled experiments were

performed to gather data, and analysis was done on those data. Finally, various

performance improvements were designed, implemented. and validated with more

15

performance measurement and analysis.

4.2.1 Performance Analysis Tools

There are three basic approaches to performance analysis that we have pursued.

First, an event logging facility was implemented, various parts of Diamond were

instrumented to use it, and an event log analysis program was implemented. This

approach provides insights into the macro-behavior of the system. Second, the Jade

RouftneTra.ce program was augmented and used to analyze micro-behavior of various

parts of Diamond. Third, a model was built to describe the expected message passing

behavior of the system for various tasks. The model used in conjunction with the log

analyses showed us where inefficient exchanges of messages were taking place. The

model, the logs, and the routine traces were also used to validate each other, to

insure that we were not overlooking anything.

The event logging mechanism is made up of two parts, a library called LogLib

which is used by Diamond components as the interface to the logging mechanism, and

a server called LogServer which runs in a separate process and serializes the events

and records them in log files. An event contains the following information:

o A timestamp;

o The time spent in pre-processing (time is recorded for elapsed wall clock
time, CPU utilization time, and page fault time in milliseconds);

o The time spent in the body (i.e., the time required to perform the requested

task);

o The time spent in post-processing;

o The operation being performed;

o The UID of the object being manipulated;

o The source of the event.

The event log analysis program is called PrintLog and is used in two primary
ways. First, it is used to produce summary statistics to aid in identifying the most

frequently used operations and the most costly operations. Second, it is used to

examine sequences of events, to fully understand the message passing behavior and

where time is being spent. This is particularly difficult in a distributed environment.

The analysis tool can integrate logs from different machines to make the total

sequence of events more understandable.

16

4.2.2 Experiments and Results

In order to fully understand the performance of the system, data was collected

under several different circumstances. First, data gathering was enabled on all of our

machines, and a large mass of field data was collected over several weeks. This data

was used mainly to identify the most frequent and the most costly operations. Second,

a controlled experiment was done between two machines, with nothing else running on

either machine. This data was used to identify common sequences of messages that

should be implemented as compound operations, and extraneous messages that could

be eliminated. After compound operations were implemented and extraneous messages

were eliminated, the experiment was repeated. It became clear from this data that

paging performance was the major bottleneck. A series of routine traces was done in

various parts of the system to identify paging problems. Some of those problems were

corrected, others were not easy to correct, yet tended to mask out other performance

problems. So, the third series of experiments involved adding memory to two machines

and repeating the second experiment, effectively eliminating the paging problems by

brute force. This final experiment provided more detailed and reliable information

about where time was being spent in the system.

The most significant performance improvements were the identification of common

sequences of operations that could be turned into compound operations. Most of

these changes were in the Document Store Manager, the Access Point Coordinator, and

the Folder Presenter.

The Document Store Manager was improved in several ways. It was modified to

make more efficient use of the underlying database system that it uses to keep track

of documents and parts of documents. It was modified to minimize the number of

times it opens and closes files in the process of handling user requests to create and

retrieve documents. The implementation of the Send operation, which sends a

document to other users as a message by adding citations for the document to their

InBoxes, was streamlined and made less synchronous in nature.

The Access Point Coordinator was changed to initialize processes and create

windows in a much faster way. Also, the login procedure and user preference

mechanism was significantly streamlined. The Access Point now uses "workstation

authentication", a mechanism that was added to the Authentication Manager to allow a

single authentication for a workstation, with possible overriding process authentication

(see Section 4.3). This cuts down considerability on message traffic when a new

17

process is spawned by the Coordinator.

The Folder Presenter was changed to deal with citation display formats in a

much more efficient way. This makes a substantial difference for large folders. Also,

when a user asks to Open a set of documents, the Folder Presenter initiates a parallel

pre-fetch of those documents. This makes a big difference when the user uses the

Next Document command in EditDoc, since the next document will already be in the

local cache.

The results of all of these measurements and improvements has been significant.

Before we started this process, the system was useable for everyday message traffic,

but was very frustrating. It is now very nice to use, and usually seems as fast of

most text-only message systems. However, the version of Diamond that is now running

on the Sun Workstation still has serious performance problems. A similar round of

performance measurement, analysis, and improvements will need to be made on that

version of the system.

4.3 Authentication Manager

Two major improvements have been made to the Authentication Manager: the

notion of workstation authentication has been implemented, and access control has

been added to Authentication Manager operations. In addition, a number of minor

extensions were implemented, and the Authentication Manager was transported to the

Sun Workstation. Finally, a review of the Diamond access control mechanism, motivated

by difficulties experienced by users in setting up the access controls they desire, was

started.

4.3.1 Workstation Authentication

Many different processes run on behalf of a user interacting with Diamond on an

Access Point workstation. For example, for each open folder, there is a process on

the Access Point running the ShowFolder program. Under the initial design for the

Authentication Manager, each of these processes has to have an entry in the Access

Control Database (ACDB) identifying the principal for which it has been authenticated.

The management of this information turns out to be quite time consuming and was

identified in the performance analysis task as a potential area for improvement.

18

To reduce the time spent in managing this information, the concept of an

authenticated workstation was developed. Under this scheme, a host (typically a

single user workstation) can request that every one of its processes be bound to the

same principal (user). That is, all of the processes running on a given workstation

can be authenticated with one entry in the ACDB. The workstation is identified by a

process UID with the Internet Address of the workstation and O's for the Incarnation

and Sequence numbers. When a user enters Diamond he identifies the principal for

which all processes running on the workstation should authenticated. This

authentication is kept in the ACDB until the user logs out. To permit finer grain

authentication for multiple processes running on the same workstation which need to

be associated with different principals, when the AuthorizatonBindingOf operation is

invoked, the ACDB is first searched for the Unique Identifier of the specified process.

If there is no match, then the database is searched for the UID of the workstation on

which that process resides (gotten by setting the Incarnation and Sequence numbers

of the process's UID to 0).

Use of workstation authentication can result in a substantial performance

improvement in many situations. For a system like Diamond where the access

point/user interface is supported by a dynamically changing collection of processes,

the number of interactions between the user interface and the Authentication Manager

is significantly reduced. The workstation need interact with the Authentication

Manager only once to authenticate itself and all processes that (will) run on it,

instead of interacting with the Authentication Manager each time a new process is

created to handle some user request.

4.3.2 Access Control Within the Authentication Manager

The initial version of the authentication manager did not perform any access

checks on operations performed on the registry or its contents. This omission was

made to facilitate the initial implementation and is clearly not permissible for an

operational system. During this reporting period, access control checking was added

to limit the operations which may be performed by any particular individual.

Each record describing a principal or group in the registry has an associated

access control list. This access control list has the same form as access control lists

for other kinds of objects, such as documents; it lists the access rights for each of

several principals or groups. This access control list specifies who may perform each

of several different operations on that record. Examples of operations are reading

19

and writing user parameters, listing the groups of which a principal is a member,

listing the principals and groups which are members of a group, and reading and

writing the access control list itself.

In addition to the access control list per database record, there are default

access control lists used to establish the access control lists of newly created

principals and groups and an access control list for the registry itself. The registry

access control list determines who may perform operations such as creating and

removing principals and groups. The default access control lists are implemented as a

special principal and a special group and may be edited using the operations available

for editing ordinary access control lists. The registry access control list is built in to

the authentication manager and is not editable. It includes only the

SystemAdministration group.

4.3.3 Authentication Manager Extensions

Certain operations in the authentication manager which had been planned but

not yet implemented were completed in this reporting period. These include the

operations to read and modify access control lists and the operations to add or

remove groups from the enabled set (a mechanism to reduce the access a user may

exercise).

A number of other improvements/changes were also made. The format of

database records was changed both to add access control lists and to reduce their

size by reducing the size of the area used to hold names and passwords. The hash

table routines containing the authentication database (record of logged in users) were

recoded to reduce memory requirements. Old entries in the authentication database

are removed when newer entries are made. Previously, entries would accumulate for

as long as the authentication manager was operating.

4.3.4 Port to the Sun Workstation

The authentication manager has been ported to the Sun workstation. This task

primarily involved changes to circumvent the lack of memory-sharing facilities on the

Sun. The three databases (Principal Registry, Group Registry, and Authentication

Database) are manipulated both by the main program and by sub-processes created to

handle individual operations. The two registries are standard databases and only

required modifications to use the new database server described in Section 4.1.2. The

20

authentication database manipulations were altered so that the main process actually

maintains the database and the subprocesses send interprocess messages to make

modifications.

4.3.5 Review of Diamond Access Control

Diamond uses an access control list mechanism for access control. Each object,

such as a multimedia document, has associated with it an access control list which

specifies who can access it and in what what ways. Each entry on an access control

list includes a principal (user) or group id and the type of access the principal or

group is permitted. Every object in Diamond has a type which determines the

operations that can be performed upon it. Originally, the type of access permitted to

a principal or group was specified by listing the operations permitted on the object.

In order to create a new access control list entry or modify an existing one, the user

specified allowable access in terms of permitted operations. This approach has the

difficulty that users tend to think in terms of relatively high level operations, which

are usually implemented by several low level operations on objects, and the operations

that appear on access control list entries are the low level operations. Consequently,

although in principle the access control mechanism is quite simple and easy to

understand, in practice users tend to have difficulty understanding how to specify

access restrictions to achieve the access control results they desire.

To correct this situation we have initiated a review of the Diamond access

control design, and expect to modify it slightly to enable users to specify access in

terms of more "macro" operations. These macro operations will be mapped into the

low level operations actually appearing on the access control list entries.

4.4 Document Manager

During this period, work on the Document Manager focused on performance

improvements, operational improvements, bug fixing, and porting the Document Manager

to the Sun workstation.

The Diamond Document Manager users Jade files to store Diamond folders.

documents, and components of documents. With the Jericho Jade file system the time

required to open a file in a given directory increases with the number of files

catalogued in the directory. During this reporting period we changed the way in

21

which Jade files and directories are used to implement the Document Store. The new

strategy is designed to spread the files used to store Diamond objects across more

directories in order to minimize the time required to open the files necessary to

access the objects. As new Diamond objects are created, whenever the number of files

in a given directory reaches a pre-determined threshold, a new directory is created

and subsequent files for new objects are created in the new directory.

We encountered a problem with the Document Store Scavenger program1 . The

problem was discovered when the Scavenger was used to reconstruct the Document

Store after a system crash. The Scavenger correctly rebuilt the document hierarchy,
but failed to restore the access control lists for the various documents, folders and

media objects. The source of the problem was that access control lists for Diamond
objects were not stored with the objects themselves (i.e., in the files used to

implement the objects), but rather were stored with object descriptors (i.e., in the

internal tables used to keep track of the objects). This was corrected by modifying

the Document Manager to store access control lists with the objects themselves.

We have developed a tool that can be used to remove folders and documents

from the local Document Store cache 2. The tool, which is called TrimCache, "trims" the
cache so that the storage consumed by the cache is lesr than some specified amount

of disk storage. It does this by deleting cached objects, least recently used objects

first, until the desired storage level is reached. TrimCache is typically run

periodically on Access Point workstations in the background via the Background

Server system.

As part of the effort to port the Document Manager to the Sun Workstation the

Diamond Document Manager was modified to make use of the Database Server (see

Section 4.1).

1The Scavenger is a program that reconstructs the Document Store by scanning all of the
files used to store documents and folders. It is useful if the tables internal to the
Document Store are damaged due to a system crash or a software bug. See Semi-Annual
Technical Report No. 5, BBN Report No. 5723 for more detailed information about the
Scavenger.

2 1n order to improve performance, each Access Point workstation maintains a local cache of
recently referenced folders, documents, and atomic objects. The Document Store cache is
described in more detail in Semi-Annual Technical Report no. 5, BBN Report No. 5723.

22

4.5 Vocoder Manager

At present Diamond uses the LPC vocoding devices designed by Lincoln

Laboratory for voice i/o. The Lincoln vocoders are currently available only as

prototypes, and, consequently, are relatively scarce. In order to make voice more

widely available as a Diamond media, we have developed means for a collection of

Access Point workstations to (serially) share a single vocoder.

A Vocoder Manager process is responsible for managing the shared vocoder. It

runs on a server host to which the LPC vocoder to be shared has been interfaced.

The Vocoder Manager host is also equipped with an "intelligent" modem with auto

dialing capability.

When an Access Point needs to use the vocoder, it interacts with the Vocoder

Manager to request use of the vocoder. For example, to output a voice passage in a

message being presented to its user, the Access Point sends the voice passage and the

telephone number for the user's telephone along with a "playback" request to the

Vocoder Manager. The Vocoder Manager then places a telephone call to the user via

the autodialer. After the call has been established, a path exists from the Vocoder

Manager through the vocoder, the modem and the telephone network to the user. The
Vocoder Manager can then output the voice passage through this path to the user.

When a vocoder is needed to input or edit a voice passage, the Access Point initiates

a similar sort of interaction with the Vocoder Manager; after the user is connected to

the vocoder through the telephone network the input or editing can occur. While

editing, the user sees a waveform and a "bouncing ball" which follows the visual

waveform as he hears the voice. This is accomplished by a UDP packet stream between

the Voice Server and the Access Point, letting the editor know where the vocoder is in

the passage.

When low cost vocoders become widely available, dedicating one to each

multimedia workstation will be preferable to using them in this fashion. However,
we've found that sharing a vocoder through the Vocoder Manager works quite well.

There are probably several reasons for this. Voice i/o is required relatively

infrequently; this permits a single vocoder device to be shared among many users with

little contention for it. The telephone system is pervasive, and its use is universally

well understood; hence using it for voice i/o is natural, and requires little user

training.

23

The Diamond Vocoder Uanager demonstrates the feasibility of providing a voice

i/o capability for Access Points not equipped with vocoders. With suitable adaptation,

it would be capable of supporting voice i/o for low cost multimedia Access Points.

4.6 Access Point

A number of changes have been made to the Access Point during this reporting

period. They fall into three categories: performance enhancements, the addition of

error recovery mechanisms, and changes made to port the Access Point to the Sun

Workstation. In addition, the Diamond Access Point has been modified to take

advantage of workstation authentication to support workstation authentication (see

Section 4.3). The performance enhancements have already been described in Section

4.2.

The error recovery mechanism, which had been designed earlier, has been fully

implemented in the Access Point. Three classes of errors are handled. First, there

are a set of errors indicating that the user is no longer properly authenticated. This

is usually caused by the Authentication Manager being taken down and coming back up

with no one being authenticated. This class of errors is handled by doing an

automatic reauthentication; a window is popped up telling the user what is happening,

then the reauthentication procedure ensures that the workstation is properly

authenticated (which may require asking the user to retype his password). After the

reauthentication procedure, the failed operation is retried. The second class of

errors are communication failures. The response to these errors is to inform the user

and ask if he wants to retry the operation or quit. The third class of errors is made

up of all other errors. These errors are simply reported to the user. If such an

error occurs in a multi-argument operation, the Access Point will reread the object to

ensure that it has a faithful copy of it.

The initial port of the Access Point to the Sun Workstation has been completed.

The most significant changes required were forced by three factors:

1. The Access Point Coordinator made much use of shared memory. Jericho
supports memory sharing among processes, but the Sun does not,

2. The Coordinator manipulated windows that it did not own. The Jericho
window system permits this, but the Sun window system does not.

3. The Coordinator and the Access Point tools were written assuming that the
window system "repairs" any damage done to windows as they are uncovered

24

after being partially or completely buried by other windows. The Jericho
window system repairs window damage for application programs, whereas the
Sun window system does not. Instead, it delivers "window damage" hints to
the application, signalling it that its window has been damaged. Window
damage hints can arrive at any time. Hence the structure of the user
interface implementation had to change to allow propagation of those hints
back to the higher levels, where the display could be reconstructed.

If Pascal had either an exception handling mechanism or the ability to pass

procedures as arguments, the problems posed by the third factor would have been

much easier to solve.

The changes to the Access Point that were required to make it run on the Sun

are typical of those that would be required to port any Jericho application that makes

extensive use shared memory and of windows* and graphical interaction. Because we

feel the problems we encountered in porting the Access Point are generic in nature,

we describe them in Section 5.2 which is concerned the issue of Sun / Jericho

compatibility.

4.7 Multimedia Editor: EditDoc

Semi-annual technical report No. 5 reported on the design and initial

implementation of Editdoc, the Diamond multimedia editor. A number of improvements

made to EditDoc during this reporting period are described in this section.

4.7.1 Image Editing

The image editing capabilities of EditDoc have been significantly enhanced by the

addition of the ability to scale and rotate images by arbitrary amounts. Scaling is

specified by "dragging" a corner of the image with the iouse. Rotation is specified by

placing a line segment on the image and moving one of its end points around the

other end point. Both the rotation and the scaling operations are quite fast and are

nearly able to follow the mouse in real time. The technique used to rotate and scale

images are described in Section 5.1.

The image editing capabilities have been extended by adding the ability to edit a

part of an image. Previously most image editing operations (e.g., scale, rotate, reflect)

had worked only on the entire image. Finally, the ability to "paint" and erase images

with a variety of brush shapes and textures has been added.

25

4.7.2 Spread sheets / Charts

A new object type, electronic spread sheets, has been added to Diamond. This

involved integrating support for the composition, manipulation and presentation of

spread sheets into EditDoc, and augmenting the representation of multimedia

documents to include the spread sheet data type.

Support for spread sheets includes support for graph and chart representation

of spread sheet data, as well as for tabular representation of it. That is, we have

combined the ability to compute models using a spread sheet with the ability to

automatically chart values in the spread sheet. There are several alternative ways to

chart data including bar, line, point and pie charts.

A spread sheet / chart occupies a rectangular area of data. The rectangular

area may be split up into separate panes in which separate areas of the spread sheet

or a chart based on values in the spread sheet may be viewed. In its viewing form, a

spread sheet / chart is just a table of values, possibly with ruling lines to give

emphasis to groupings of data and/or a chart. Figure 2 shows a spread sheet in the

form that a reader of a message would see it. In its editing form, a spread sheet /

chart looks like a standard spread sheet with labels for rows and columns and/or a

standard business chart. Figure 3 show the same spread sheet / chart in the form

that the author of a document would see it. Charts have the same appearance in

viewing and editing forms.

A rich set of functions is available in the spread sheet covering the following

areas:

o Arithmetic Functions:

Sum(of list), Average(of list), Min, Max,
Round, Ceil, Trunc.

o Transcendental Functions:

Ln, Exp, Log, PWRofTEN.

o Trigonometric Functions:

Sin, Cos, ATan2.

o Logical Functions:

26

l~eowl TOIIIMMn
[Dates 1& De 4 131 55-s1M

Bel ow is an analysais of the following approiation to the distancen between
two points:

I -T k~x-dudu <sdU (s dx

Values in other octants NOW be found bg intrchanging dx anddua/ousn
absolute val ues.

dx I g x exact awo ra*@ K: -0.3583

i~ma uI 6.6 "i 4.5231E-8
1 M 8m"s 9.59 IM59 1.W2 1.9638 -@Am25 1 .9486E-4
.me .10" eim .6W I i.Mi4 I-0."e4 Z.USSE-4

1.6.6 0.15"6 669 1.9112 1.91ST I.M655 LO.SSUS-4
IM"69 19.2996 9.0 1.9"98 1 .9M58 . 96Go 2.254SE-4

exact -

1 /

0. .1 6.2 0.3 6.4 9.5 9.6 6.7 9.8 6.9 1 1.1

. ..6

............5 erro.*20

0. 94..60A1.

Figure 2. A Spread sheet / Chart in Viewing Form

27

DoI. ct >Fr-xk S S.ODCzct!. eet ihsita

Promi Toml inson
Dates 16 Dec864 138 *

Below is an anslajala of te fol lowing appvominat~nn to the distance betweeen
twoa Points:

Values in othev octants -Y~ be found bu Interchanging dx and du andlor Laing
absol ute values.

AC _

cb exact Iapprox errors' :
i.0o~D r~0-~ue ~iso. io . a .u. a e

.. faw -0.4"N I.Mz- I abSM 455*0

1 .4

6.1 0.2 0.3 6.4 0.5 9.6 0.7 6 0.9 t 1.1

duj

0 .016 /..

...0 error*2Z

4.05

0.2 0.4 6 6.5 1 1.2

6.2 (F) I1,(AZ+U2)+31sCZ+Iz2 1.0000

Figure 3. A Spread sheet / Chart in Editing Form

28

And, Or, Not, If.

o Finance Functions:

Compound. Annuity, MPV.

o Date Functions:

Sum and Difference.

4.7.3 Text

A new sub-editor for text has been implemented. The goals for this new sub-

editor were twofold: to dynamically format text as it is being entered and edited, so

that the format is always accurately displayed in the EditDoc window; and, to greatly

expand the formatting options available.

The new text sub-editor supports the following features:

o There is one view of text. Text is dynamically formatted as it is entered
from the keyboard. Justification and filling are done as keys are typed.

o Formatting environments are supported so that an author can compose fully
formatted documents. There is a set of default environments (Paragraph,
Verbatim, Enumeration, Itemization) that can be used as the basis for
additional user defined environments.

o Document structure is preserved so that partially completed documents and

cooperatively developed documents can be composed.

o Font specification is by three parameters: Family, Style and Size.

As a first step toward developing a collection of fonts, we have modified our
font edi*ting tool, EditFont, to accept a font and to produce italicized and
bold versions of the font. The result of italicizing or "boldifying" a font is
generally a reasonable approximation to the italic or bold version of the
font; the font editor can then be used to "fine tune" individual characters
in the font.

o Editing actions may be performed by using the mouse to point to the text
and make menu selections, and/or by means of keystroke commands which
are similar to the EMacs command set.

We have plans for improving the way in which text objects are included in multimedia

documents and will pursue these plans in future work.

29

4.7.4 Graphics

The Graphics handling capabilities of EditDoc have been enhanced to include

support for polygons and for bitmap elements. A bitmap element is a rectangular

entity which contains a bitmap image. Typically bitmap elements are added to graphics

objects by cutting a portion of a bitmap image object and pasting it into a graphics

object (see Section 4.7.5). Bitmap elements are often useful as a background for a

drawing.

In addition, means have been provided to control the way objects are aligned

with respect to one another. For example, it is possible to align the tops, bottoms,

right side, left side, or centers of a set of specified elements in a graphical drawing.

4.7.5 Clipboard

The notion of a "clipboard", similar to that found in the Apple Lisa and

MacIntosh systems, has been added to EditDoc. It is now possible to cut an item

(either a whole object or part of an object) from one document and paste it into

another (or the same) document.

Unlike the Lisa and MacIntosh implementation of clipboards, the number of items

that a Diamond clipboard can hold is determined by a user preference setting. The

clipboard is managed as a stack. Items that are cut are "pushed" onto the stack.

When an item is cut and the stack is full, the oldest element on the stack is discarded

to make room for the new item to be added. When pasting an item into an object, if

the desired item is not on the top of the stack, the user may cycle . rough the

clipboard stack until the desired item is reached.

The cut and paste operations work both within a single given data type (e.g.,

cutting from a graphics portion of one document and pasting into a graphics portion

of another) and between two different data types (e.g., cutting from a graphics portion

of one document and pasting into a bitmap portion of another). Of course, when an

object of a given type on the clipboard is pasted into an object of a different type,

conversions are performed on the source object to make it conform with the

destination object. In some cases this may be infeasible; for example, converting an

image into text.

30

4.7.8 Misoellaneous

New commands have been added to EditDoc which enable a user to see the "next"

or "previous" document in the "current" folder. This makes it easy to read a set of

documents in a folder one at a time without having to explicitly close the current

document and open the next (or previous) document. This is particularly useful when

reading new messages from the InBox folder.

4.8 Import / Export Manager

The Import/Export Manager is responsible for exchanging multimedia messages

with other multimedia systems. To send a message, it first translates the message into

a standard format for transmission, and then sends the message. The transmission

format is part of the emerging DARPA multimedia protocols.

At the July meeting of the DARPA multimedia message system community, an

agreement made to between ISI, SRI, and BBN to convert from RFC 759/767 format for

multimedia message exchange to a variation of that format specified by SRI. It was

agreed that the conversion should be completed by October 1, 1984. We have modified

our Import/Export Manager to transmit the new format and to receive either format.

The new multimedia format specified by SRI is deficient with respect to text

protocols. It does not allow nested structures (like an enumeration within an

itemization within an enumeration). We have designed an extension to the format and

the software to implement that extension. We have not implemented the extension yet.

The format is also deficient in not allowing font specifications.

The Import/Export Manager is the only major component of the Diamond system

that has not yet been ported to the Sun Workstation. The major problem is that the

current Import/Export Manager uses the BackgroundServer and background FTP

requests to receive/deliver messages from a remote MPM (we are using ISI's MPM).

Most of the manager is concerned with translating between formats, and that part will

port to the Sun easily. The delivery mechanism will not port easily. Our current plan

is to make use of the Sun implementation of the MPM developed at SRI (which is not

yet available), and modify the delivery part of the Import/Export Manager to use the

MPM on the same machine.

31

4.9 Papers, Documentation, Meetings, and Presentations

During this period, we developed the following material for describing the

Diamond system.

o A new video tape describing the goals, architecture, hardware base, user
interface and use of Diamond.

o "Future Workstations and Applications", H. C. Forsdick, NOAA Conference on
Future Directions in Data Communications, Denver, CO, July 1984.

o "The Diamond Multimedia Message System", H. C. Forsdick, Federal Computer
Conference, Washington, D. C., September 1984.

o "Diamond: A Multimedia Message System Built Upon a Distributed
Architecture", R. H. Thomas, H. C. Forsdick, T. R. Crowley, G. G. Robertson,
R. W. Schaaf, R. S. Tomlinson, V. M. Travers, to be published in IEEE
Computer, Summer 1985.

o "The Diamond Multimedia Document Editor: User's Guide", BBN Report No.
5724, (DRAFT) July 1984.

o "Multimedia Mail Meeting Notes", H. C. Forsdick, Minutes of a meeting about
experimental multimedia message systems held at BBN on 23-24 July 1984,
NWG RFC 910.

In addition, we attended the IFIP 6.5 Working Conference on Computer Message

Systems held at Nottingham England and presented a paper on Diamond titled "Initial

Experience with Multimedia Documents in Diamond". The paper was published in the

conference proceedings, Computer-Based Message Services, Hugh T. Smith, editor,

North Holland, 1985. A slightly revised version of this paper was also published in the

September 1984 issues of the IEEE Quarterly Bulletin on Database Engineering.

32

5. THE JERICHO JADE SYSTEM

5.1 Image Manipulating Operations

Fast algorithms for scaling and rotating bitmap images by arbitrary amounts have

been developed, and routines which implement these algorithms have been added to

the Jade ImageOps library. The EditDoc multimedia editor makes use of these image

manipulating routines to permit users to rotate and scale the image components of

multimedia documents (see Section 4.7).

Image scaling is done by adding or removing rows and/or columns of the bitmap

image to achieve the desired size image from the original image. When a row or

column is added, it is a duplicate of the adjacent row or column. When a row or

column is removed, none of the adjacent rows or columns are adjusted. The added

(removed) rows or columns are distributed evenly over the extent of the image so that

effect of enlargement (reduction) is applied to the entire image. Figure 4 illustrates

how this is done. When an image is scaled in both dimensions, the scaling is first

done in one dimension and then in the other. In interactive image editing operations.

to preserve as much accuracy in scaled images, we always start from the original

image and scale up or down from it. Figures 5 and 6 show examples of an image that

has been enlarged and reduced. In one case the aspect ratio of the original has been

preserved by forcing the scaling in the horizontal dimension to be a linear function of

scaling in the vertical dimension. In the other case there no linkage enforced on

scaling in the two dimensions.

The algorithm for rotating bitmap images through arbitrary angles assumes that

an efficient means exists to transfer an arbitrary rectangular region of a bitmap image

from one location to another. Also assumed is a method of rotating images through

multiples of ninety degrees.

The rotation algorithm is based on the fact that a rotation transformation can

be decomposed into a sequence of three shear transformation such as the following:

33

012345678901234567189 e1234567990123456789012

R0

e
d
U

01234578901 34

Preserve Aspect Ratio

Reduced

Original

Enlarged

Figure 5. Reduction and Enlargement of an Image, Aspect Ratio Preserved

35

Arbitrary Aspect Ratio

'V.l
Original

Stretched
Vertically

Stretched
Horizontally

Figure 6. Reduction and Enlargement of an Image, Arbitrary Aspect Ratio

36

P = A ' B * A

(cos(x) sin(x) 1 0 1 b (
-sin(x) cos(x) 1

Where a = (cos(x) - 1)/sin(x) and b = sin(x).

Transformations such as shearing and rotation are mathematical operations

which cannot be implemented exactly when the coordinates of points must be integers.

Thus the implementation of a shearing operation is faced with the same problem as the

implementation of a line-drawing operation. The solution is the same: the transformed

points are moved to the nearest (in some sense) available raster position. The effect

of this on a horizontal shearing operation is illustrated in Figure 7.

.L.L. ...'.LL..-". .i_ _ , "]ii" :! !

..:.. -4.: - .- - b .- --H

.-7 .: .r .--!-..----. . - .r .T"- V ..-.--

Horizontal Shear for a = 0.1

Figure 7. The effect of a horizontal shearing operation.

In fact, the necessity for moving pixels by an irtegral number of raster positions

37

is precisely the reason that this algorithm is efficient; many pixels must be moved by

the same amount and we have postulated the existence of an efficient means of doing

this. All pixels in a given row move by the same amount and, furthermore, several

adjacent rows also move by the same amount. The smaller the angle of the shear is,

the larger the size of the block is. As the angle approaches 45 degrees, the block

become less high until at 45 degrees, each block is just one pixel high. The picture

for vertical shear is similar except, of course, for a change of axes.

For maximum efficiency, as many pixels as possible should be moved in each

operation. This means that for angles from 0 to 45 degrees, the first shear should be

horizontal and for angles from 45 to 90 degrees, the first shear should be vertical.

For angles outside the range of 0 to 90 degrees, other algorithms should be employed

to rotate by +90, 180, or -90 degrees followed by the present algorithm.

It is also necessary for the discontinuities in the first and last shearing

operations to be properly positioned. This is especially true for small angles. The

reason is that if the discontinuities in the two shearing operations occur at the same

places, adjacent pixels which straddle the discontinuity will end up being separated by

two positions. To avoid this problem, the discontinuities are displaced so as to be

maximally separated at the middle of the picture.

Figure 8 illustrate the effect of rotating a bitmap image through a small angle.

(Notice that the rear edge of the backpack has been made vertical.) Because this

image started with a fairly large amount of noise in it, the distortions due to the

rotation process are not very noticeable. Images with greater regularity or finer

features are more noticeably distorted.

5.2 Compatibility with Sun Workstations

The execution environment provided to application programs by the Jericho Jade

and Sun Unix systems differ in two ways which have had a significant impact on

porting applications from Jericho to the Sun:

1 Jericho permits processes to share address spaces, and the Sun does not;

2. The Jericho window system automatically repairs all "damage" done to a

38

Figure 8. The effect of rotating an image through a small angle.

window when the window is unburied 3 , and the Sun does not. Rather it
passes a list of the damaged areas of the window to the application program
which is expected to repair the damage.

This section summarizes how we dealt with these differences in porting Diamond to the

Sun.

Our goal at the outset of the porting effort was to maintain a single set of

sources for Diamond which could be compiled either for Jericho or for the Sun.

Diamond makes extensive use of the Jade program libraries. Furthermore, many of the

places where changes had to be made to handle the differences between Jericho and

the Sun were in the libraries. Consequently, to meet our goal of a single set of

sources it was necessary to audit the Jade software and, where necessary, to retrofit

it to be compatible both with the Sun and Jericho environments.

3Those parts of the window that were under another window are considered "damaged" and
need to be "repaired" by restoring their current contents.

39

The fact that Sun processes do not share memory forced a number of substantial

changes throughout Diamond. The database mechanisms used by the Document Store

Manager and the Authentication Manager, and the document store cache mechanism

used by the Access Point (see Section 4.4) made extensive use of shared memory.

These mechanisms have been redesigned to use a Database server process (see Section

4.1.2). The Coordinator component of the Access Point made use of shared memory to

control the set of processes used to implement various Access Point functions. That

control mechanism had to be redesigned to operate without shared memory. Various

Diamond components use a synchronization mechanism to coordinate their internal

activity. This synchronization mechanism was implemented on Jericho using shared

memory in order to achiever maximum efficiency. The implementation of the

synchronization mechanism was completely redesigned to make use of a

Synchronization Server process, while the interface to it provided for application

programs was preserved.

Differences in the window systems between Jericho and the Sun were handled in

two ways:

1. The Jade WindowLib library, which is the program library application such as
Diamond use to manipulate display windows, was ported from Jericho to the
Sun. This provided an application interface to window manipulating
functions for the Sun that was identical to that on Jericho. Consequently,
the parts of a program that do routine window manipulations do not have to
be modified when the program is moved from Jericho to the Sun.

2. The notion of "window hints" was expanded to include a new "window has
been damaged" hint 4 . This new hint makes it possible for an application to
discover when one of its windows has been damaged and to take appropriate
action to repair it.

In order to make various parts of interactive applications, such as the Diamond

Access Point, responsive to window hints (damaged and changed hints in particular),

all user input functions (i.e., uses of pop up windows, menus, forms, scrolled objects,

and the Access Point library) must be prepared to return control to the application

when an unexpected message (i.e., any non-character, such as a window hint) arrives.

During this reporting period, we modified all of our basic user interface libraries and

the various parts of the Diamond Access Point to deal with these hint messages

4A window hint is a signal sent to a process by that window system that an event relevant
to a window of interest to that process has occurred. See Semi-annual Technical Report No.
5 for more details.

40

correctly.

This set of changes was substantial, but was forced on us because of the nature

of the Sun window system, which does not maintain off-screen images of partially

buried windows. When a partially buried window is exposed, damaged hints are sent to

the process owning the window, and that process is expected to repair the damage.

The problem for an application, such as the Access Point, is that these damage hints

may arrive when some very low level user interface function, such as the one that

pops up a menu and gathers the menu item specified by the user, has control. The

low level functions have no notion of what is actually on the screen. Hence they have

to propagate the hint up, possibly through several layers, to the application, which

can then reconstruct the display to repair the damage. Since Pascal does not have

an exception mechanism or the ability to pass procedures as parameters, in porting

the Access Point, we were forced to restructure all the layers of the user interface to

make it possible to pass these hint messages back up to higher levels, and then, after

the hints have been handled, to return to the lower levels without losing any context.

41

6. THE JADE PROGRAMMING ENVIRONMENT

6.1 Network protocols and IPC

The interhost interprocess communication facility has been successfully ported to
the Sun. Moving the IPC facility required some minor changes to both the IPC and the

underlying TCP/IP protocol support. These changes are described below.

The Sun TCP implementation supports the notion of "continuous listening" ports.

As the name suggests, a continuous listening port is one which remains in the

listening state at all times, even while a connection to the port is being established.
Without continuous listen the application process using the port must "recycle" it into

the listening state after a connection attempt is handled. This means that there is a

(usually brief) period of time during which the port is not in the listening state, and

during which attempts to connect to it from remote processes must fail. With

continuous listening, attempts to connect to the port while another connection

attempt is in progress will not fail due to absence of the listening port. Sir ;e

listening ports are typically used to support "services", the continuous listening port

mechanism makes sure that the service is continuously accessible from the network.

The Jade TCP implementation, which previously did not support continuous

listening ports has been augmented to include the notion, and the Jade TCP interface

library for both the Jericho and the Sun has been extended to explicitly support the

the notion of continuous listening ports.

In addition, the IPC implementation has been changed to use continuous listening

ports. This was done so that the IPC manages its TCP connections the same way on

the Sun and the Jericho. Before this change, the IPC was written to explicitly recycle

its listening port. The IPC uses a continuous listening port, and no longer explicitly

recycles the port. In addition, the IPC handled failures to connect to other IPCs by

immediately retrying a few times in order to dealwiththe possibilitythatthe failurewas
due to "dead time" at the remote IPC while its listening port was being recycled. This

was not changed, because the IPC may need to communicate with other IPCs which

must explicitly recycle their listening ports.

The ability to broadcast messages to all hosts in a Diamond configuration plays

an important part in the Diamond implementation. In particular, it is used by the IPC

43

to locate objects5 .

With the addition of Suns on an Ethernet, the Diamond development configuration

now is distributed across two local networks, the Jericho Fibernet and the Sun

Ethernet, which are connected by a gateway. We expect that future Diamond

configurations will also span several local networks. For Diamond to work with such a

configuration Lhe ability to broadcast must be extended to span the networks which

comprise the configuration. To deal with the short term problem of two networks

connected by a gateway, we have modified the Jade IP implementation so that packets

broadcast on the Jericho fibernet are propagated to the Sun ethernet, and have

modified the interface to the Sun IP to that. We expect that it will be necessary to

refine the broadcast propagation mechanism as the topologies of configurations

become more complex.

In experimenting with configurations spanning two networks we encountered a

problem due to the apparent inability of the Sun network code to reassemble more

than 2 fragments of an IP datagram back into the datagram. The problem was

discovered while sending IPC small messages from a Jericho through a gateway to a

Sun. The maximal size of an IPC small message, exclusive of headers, is 1240 bytes.

Small messages are typically sent as single IP datagrams. The Jericho IP

implementation had been set up to fragment IP datagrams into 576 byte fragments for

transmission through the gateway that connects the Jericho Fibernet to the Sun

Ethernet. We discovered for IPC small messages sent from a Jericho to a Sun, that

messages fragmented into two or fewer fragments were properly received by the Sun

but those fragmented into three fragments were not. This problem was corrected by
"reconfiguring" the Jericho IP to fragment IP datagrams into larger fragments so that

a maximal IPC small message would be broken into at most two fragments.

6.2 Software State Database

During the past six months, the Software State Database system (hereafter

referred to as SoftwareState) has become a regular part of our development

environment. Distribution of new software is done exclusively through the mechanisms

provided by SoftwareState. In addition to improving the robustness of the original

5S.e Semi-Annuol Technical Report No. 4. 6SN Report No. 5722 for details.

44

operations, a number of significant improvements have been made to the system.

These include:

o The inclusion of dependencies between files into the database.

o The use of dependencies to check the consistency of an operation.

o Separate create dates for each file system being maintained by
SoftwareState.

o Support for working on a large system in a private environment.

o Integration of the Sun workstations into SoftwareState.

6.2.1 Dependencies

Within a complex software environment, dependencies naturally arise between

modules. Object files depend on the source files they are compiled from and on the

interface of the libraries they use. In our environment, assembly language files for

the Sun depend on the object files they are translated from.

When a file is Installed. SoftwareState analyzes it to automatically determine

which files it depends on. These forward dependencies are entered into the database

along with the symmetrical backward dependency. (That is, the database explicitly

contains the fact that object A uses B and the distinct but related fact that B is used

by object A.) These dependencies may be perused by a user or used by the system to

check the consistency of a requested operation.

SoftwareState recognizes three different kinds of dependencies:

o Time. A time dependency implies that the dependent file must have been
created at a later time than the file it depends on. An object file has a
time dependency on the source file it is compiled from.

o Interface. An object file has an interface dependency on a library which it
uses. The object file must be recompiled if the interface changes, but does
not need to be recompiled if only the implementation part of a library
changes.

o Simple. A simple dependency is used to break a loop in an interface
dependency cycle. It is intimately related with the compilation strategy used
in the Jade environment to handle dependency loops within a set of
libraries.

Pascal object files and Sun assembly files are analyzed to determine the files

45

they use. Dependencies which cannot be derived automatically could be entered into

the database by hand. There are several complications with regards to dependencies.

o Interfaces. In the Jade environment, the implementation of a library resides
in the same file as its interface. In SoftwareState, we wish to be able to
distinguish when only the implementation of a library has changed (thereby
recognizing that programs which use the interface do not need to be
recompiled). The write date of the file does not contain enough information.

To deal with this problem, the SoftwareState system maintains an Interface
Write Date. SoftwareState calculates a value for the interface of a library
when it is Installed. This value is a single integer derived from a CRC of the
characters in the interface. When a new version of a library is Installed,
SoftwareState recalculates the CRC of the interface. If the CRC value has
changed, then the library gets a new Interface Write Date. Other files which
use the changed library will need to be recompiled. A programmer or tool
can determine what recompilations are necessary by comparing the write
date of an object file with the interface write date of the libraries which it
uses.

o Dependency Loops. The simplest example of a dependency loop is a library Li
which uses a library L2 in its implementation. Library L2 in turn uses
library LI in its implementation. This creates a problem in the Jade
environment because there is no acceptable compilation ordering. Li must
be compiled before L2 and 12 must be compiled before Ll. In order to get
around this problem, it is possible to specify that library Li uses the
interface contained in the source of L2 rather than in the compiled version
of L2. Li can then be compiled before L2.

The consequences of this for the dependencies contained in the database
are as follows:

Compiled library files typically have interface dependency on other
compiled library files (Ll.Library depends on L2.Library). When a
library explicitly uses the interface in the source file of another
library than the interface dependency is on the source file (Li.Library
depends on L2.Pascal).

Despite the fact that a library Li is compiled using the source version
of another library's interface, when it is run it will use the compiled
version of that interface. To reflect this fact, a Simple dependency is
added from Li.Library to L2.Library. This ensures that a check to see
if all the dependencies for Li are satisfied will also check all the
dependencies for 12.

8.2.2 Using Dependencies

The simplest use of dependencies is to make them available for viewing. A

programmer contemplating a change to the interface of some library can look in the

database and find every file which uses it. This is especially useful if the interface

change requires editing the dependent files rather than simple recompilation.

46

SoftwareState checks dependencies on CheckOut, Checkln and Install. When some

constraint is not met, SoftwareState will warn the user. However, a user may ignore

the warning and proceed with the operation. For example, it is possible to Install a

new version of a file on the Jericho without first creating and installing the dependent

Sun assembly file. This allows us to experiment with some new feature on the Jericho

before going through the additional overhead of creating a version for the Sun. After

experimenting, we can go back and determine what needs to be done to bring all files

up to date.

The constraints for each operation are described below.

o CheckOut. SoftwareState checks to make sure that all files which have time
dependencies on the files being checked out are included in the set being
checked out. The simplest example is requiring that the user check out the
object file along with the source of a library or program.

o Install. Install checks time and interface c-castraints. This is to prevent the
release of incompatible versions of interfaces and the programs which use
them. It will also catch the failure to compile some source file.

o Checkin. Checkln also checks time and interface constraints. This is
because a user may wish to Install some version for experimental use, but a
CheckIn operation presumes that the programmer is finished with the file
and should ensure that all constraints &re satisfied.

d.3 IPC Monitoring Facility

The IPC monitoring facility is a tool which makes it pos. -)Ile to observe

interactions among components of a distributed application, such as Diamond. The

interactions are recorded by the monitor as the monitored application executes, and

can be observed by a user in (near) real time or can be repeatedly played back to

study operation of the application. The monitor understands both the higher level

protocols used to support interactions among components of distributed applications

and the lower level protocols. This makes it possible to parse and display the

contents of interprocess messages as well as to display the patterns of message

interactions. Because the execution of a distributed system, even over a relatively

short period of time, can involve a large number of interactions, the IPC monitoring

facility supports a very flexible "message filtering" capability through which a user

can specify those interactions that he is interested in observing. We expect that the

TPC monitoring facility will be extremely useful in the debugging and demonstration of

distributed applications.

47

The IPC monitoring facility is composed of the following four types of component

processes:

o IPCMonitor - This process supports the user interface to the IPC monitoring
facility. Through this interface, a user may add and remove monitoring
filters, enable or disable monitoring on the distributed host computers, and
control the display of monitoring information tha& is being collected and
retrieved by other components of the IPC monitoring facility.

o MetaMsg Manager - This process runs on the same host as the IPCMonitor
process and manages the communication between that process and the
MonitorData manager processes that .re distributed throughout the local
area network. The MetaMsg manager distributes commands from the user
interface (e.g. enable monitoring, add filter) and receives the monitoring
information that is being collected by the remote IPCServer processes. This
monitoring information is received in the form of meta-messages which are
recorded in a log file and are forwarded upon demand to the IPCMonitor
process so that the information that they contain may be displayed to the
user.

o MonitorData Manager - Just as the MetaMsg manager manages the
communication between an IPCMonitor process and the distributed
MonitorData manager processes, the MonitorData manager process manages
the communication between a local IPCServer process and all of the MetaMsg
manager processes that exist in the local area network.

o IPCServer - The main responsibility of the IPCServer is the transport of
interhost messages. A portion of the IPCServer, however, is devoted to
supporting the IPC monitoring facility. This support entails managing a data
base of active monitoring filters, matching messages against these filters in
order to determine whether a message is being monitored, and sending
information about the monitored messages back to the monitoring program.

As of the end of the last reporting period, the initial design of the IPC

monitoring facility had been completed along with initial implementations of both the

MonitorData manager component and the IPCServer modifications to support

monito1. ,ng.

During this reporting period, the initial implementations of the IPCMonitor and

MetaMsg manager components were completed and the first version of the IPC

monitoring facility was released. For the remainder of the reporting period since the

monitor's release, our work has focused on improvements to the program's

performance and enhancements to its user interface.

6.3.1 IPC Monitor Scenario

This section presents a series of figures that illustrate the use of the IPC

48

Monitor. The IPC Monitor maintains a dynamic display which shows interactions among

the components of the distributed application being monitored. The figures presented

are software "snapshots" of the display as a short Diamond scenario was being

monitored. The scenario chosen is one in which Diamond retrieves a document from

one of its document stores. This involves retrieving the DocStruc for the document

(i.e., the data structure which defines the document) and all of the atomic objects

referenced by the DocStruc.

Figure 9 shows the display of the IPCMonitor program, immediately after the

document retrieval has started. The three circular objects represent host computers.

The Schaaf host is shown at the top of the display with the Jade and Diamond hosts

being shown in the lower left and lower right, respectively.

The ovals shown inside the hosts are processes involved in running the Diamond

application. The lines drawn between processes and hosts indicate currently active

communication paths. Note that there does not currently exist an active path between

the Jade host and the Diamond host.

The shaded ovals represent processes on the path of a message that is currently

in transit. In this illustration, a message is in transit from the Ed'itDoc process on

the Schaaf host to the DocStore process on the Jade host. The message itself, is

represented by the small circular icon containing an "S" shown next to the DocStore

process on Jade. The "S" indicates that the message is a small message, and is

therefore contained in a single network packet. Other types of messages of large

messages ("L") and IPC protocol messages ("I").

The area beneath the hosts is used for the monitoring program's control

switches and status indicators. The Record switch is used to request the display of

monitoring information in (near) real time as the program being monitored executes.

As this information is displayed, it is also recorded in a log file. The Play switch is

used to request play back of a log file. The shading for the play switch indicates that

the monitoring facility is now in playback mode. The Pause switch is used to freeze

the action in the area above the control switches and is shown to be on. The Single-

Step switch is also on. This causes the monitoring facility to pause whenever a

message in transit reaches its destination.

The Speed switch is used to set the rate at which the monitoring display

49

changes. Running at a faster rate allows the monitoring facility to keep better pace

with the executing application, but may be too fast for the user to follow.

Accordingly, the user may adjust the rate to whatever is comfortable. The current

setting is a little more than one-half of the maximum rate and is indicated by the

degree of shading shown in the switch indicator.

The Log Size status indicator shows the current position of the monitoring

program in the log file being played back. In record mode, this status indicator gives

a rough idea of how far the monitoring facility has fallen behind execution of the

program being monitored. Currently, a little more than two-thirds of the log file has

already been replayed.

Figure 10 shows the contents of the message from the EditDoc process to the

DocStore process. The message contents include the unique identifiers (UIDs) for the

source and destination objects, the type of operation that the source process is

requesting to be performed on the destination object, and the request identifier

information that is associated with the message. This particular message is a request

from the EditDoc process to perform a ReadYalue operation on the indicated DocStruc.

As the message was in transit from EditDoc to the DocStore, the user caused its

contents to be displayed by holding down the left button of the mouse, positioning the

mouse cursor above the icon for the message, and then releasing the button. Holding

the left button froze the action, and releasing it caused the message contents to be

displayed. Clicking the right mouse button at this point would cause the message

contents to be taken down and would unfreeze the display.

If a more detailed display of the message contents is desired, the user may click

the left mouse button while the mouse cursor is positioned over the message icon.

Doing this, changes the display to that shown in Figure 11 in which the various fields

of the message are displayed. The name of the field is shown in the first column and

the value of the field is given in the second. For structured values (i.e., records or

arrays), an indication is given that the field value is structured. An example of this

is the MonitoringInfo field in Figure 11. The components of a structured field may be

displayed by asking for More Detail on that field. The type that is associated with

each field may be displayed by requesting Verbose mode.

The request by the EditDoc process to perform the ReadValue operation on the

50

Report No. 5901 Bolt Beranek and Newman Inc.

DocStruc cannot be satisfied until the DocStore process ascertains whether the

EditDoc process is allowed to read the referenced DocStruc. The DocStore process

checks this by sending an AuthBindingOf request to the AuthServer process on the

Diamond host. Transmission of this message is shown in Figure 12. Note that as a

result of this request, a communication link between the Jade and Diamond hosts is

indicated.

In Figure 13, we see the response to the AuthBindingOf request from the

DocStore process. Response messages are represented by an icon that is slightly

different from the one used for request messages. Requests are represented by a

white circle containing a black letter, while responses are represented by a black

circle containing a white letter. The message contents for a reply is also different

from that for a request in that the message contains reply code information. In this

case, the reply code is SuccessComplete which indicates that the operation succeeded

and that the EditDoc process is allowed access to the DocStruc whose value it

requested.

Figure 14 shows the transmission of the response to the original ReadValue

request from the EditDoc process. Figure 15 shows the fields that are in this

response message. This display was obtained by asking for more detail on the

response message icon.

After the EditDoc process receives the value of the DocStruc object, it
determines all of the atomic objects that are referenced by the DocStruc. These

objects are then requested one at a time from the DocStore where they are located.

Figure 16 shows a request from the EditDoc process to the DocStore process on the

Jade host for a particular atomic image object.\ Upon receiving this request, the

DocStore makes sure that the EditDoc process is allowed access to the object in the

same manner that access to the DocStruc was checked. If the EditDoc process is

found to have the proper authorization, the value of the atomic image object will be

returned. This last step of showing the response containing the value of the atomic

image is shown in Figure 17. Notice that the response is in the form of a large

message, indicated by the "L" inside the message icon.

51

kchaoi

D Diamond So~ e

~........

'.. %

COmmandS: Add Filter, Disable Mon;itors, Enable monitors, Quit IPCMonitor,
Remove Filter, Show Filter, Toggle Debugging

Figure 9. DocStruc ReadValue request 52

D , od h I de

", " .",d/'.!

//

.//

/

4- Dc~tcr ZalDc-Storf

Source UI1 = Process: 19Z.1.3.117:700:ZlZ
Dest UZD a DoeStruc:19Z.1.3.119:202z55

Operation - ReadValue
Global Request 1D a 192.1.3.117:700:213 -
equest 1D a 192.1.3.117:700:213

A'.',,

Commands: Add Filter, Disable Monitors, Enable Monitors, Quit IPCMnitor,

Remove Filter, Sh" Filter, Toggle Debugging

Figure 10. DocStruc ReedValue request - ?essage description

... First Item
Ed o~c'

SracprocPia 9Uhaaf :39'

SoUrc.UZD Processg 192. 1.3.1l171700221

DestProcNan* 'Dctore'

DeStProapiJ 'Jade:1 16'

D*stUID Doostruc: 192. 1. .1191202:55

MsgType Request

0 1oba IRe-questXD ISZ. 1.3. 117700:213

RequestlO 192. 1. 3.117:700 1213

OperatiOn Readva Itue

Monitor ingInfo IRECORD)

MsS~oader <RECORD>

...Last Item ..

Commands: Less Detail, More Detail, Tore. Verbose or menu

Figure 11. DocStruc ReadValue request - getailed information

Ed 4tDoc /

lpcur/

Dc1o t '

.,~r~t \y----4~ tsI-f

/ orc \ I rcs:92131923

/ etUD At~t:~~i

I oReue 10 ros 192.1. .119:213:7

Commands: Ad3d Filter, Disable Monitors, Enable Monitors, Quit IPCMonitor,
Remove filter, Show Filter, Toggle Debugging

Figure 12. AuthBinding~f req'uest 5

* *, Schaaf

EdstDoc y*

1IPC$4r.rr

Source UZO Procoess: 192.1.3. 126:617: 1031 1

global Request ID = ISZ.1.3.I19x213:79
e~quest ID - 192.1.3.119:213:79 ___

General Reply CoJe SuccessCOmpIt leKZ

Commands: Add Filter, Disable Monitors, Enable Monitors, Quit ZPCMonitor,
Remove Filter, Sh~ow Filter, Toggle Doebugging

Figure 13. AuthBindiflg~f response

Ex, .P~citr >Scb -e-c wih Sbft

Diamrtd fOF~e

Dest. UZD -Process: 192.1.3.119:213:78

QID~t UD aProeess:192.1.3.117:700:2Z
Global Request 10 = 192.1.3.117:700:213
Request ID a 19Z.1.3.117:700:213
'General Reply Code m SuccessComplete

tceq

Fiur 14 DoDo.Stad ale epo se 5

.... First IteM
rockam Dosore,

SrcProcPld I3ad.1311

SourceUlO Process: 192.1.3.1191213a7g

DestProcNam* sa Ei t~o.'

Destproepid 'ScIhaaft39'

DestUID Process: 192.1.3.117:700:212

MsgType Response

GlobalRequestlD 192.1.3.117:7009213

Requestlo 19Z.1-3.117:700:213

GenRep IyCoc6 SUCeeSSComp let.

ObjectVaI* uea 0 0 2 0 0 0 1 192 1 3 119..

WriteDays 45915

WriteNSecs 40241114,

Monitor inglnfo <RECORD>

MsgHeader (RECORD>

... Last It4M ...

Figure 15. DocStruc ReadValue response - detailed information
58

1XIM~t~p/ I-. to. gnv RN -a-

/ D, amond Shwolf

Ed , ~

jNource U15 Process: 92.1.3.I17:700:ZIZ
Dest UID -AtomicImage: 19z.1.3.119:0zO:5Z
IOperation -ReadValue
IGlobal Request ID a 192.1.3.117:700:213

7. LIM, 'S 14

Commandss Add Filter, Disable Monitors, Emable Monitors, Quit IPCMonitor,

Remove Filter, Sh~ow Filter, Toggle Debugging

Figure 16. AtomicImage ReadValue request 5 9

II 4 97 a MMAPM

A. Shwole

-Ed~t-o

Souce t r~*SIaM--19Z36

/etUD Pooz19.-.i:0:1

~~ ~ReuetZ 10 Pa ces 192.1.3-117S701216

- f sneral Reply Co"e SuccessComplete

Io.-Stor4 Dc. - I .. torq i

% ~ _

% .4

Commands-: Add7 Filter, Disable monitors, Enable M',nitors, Quit IPCMonitor,
Remove Filter, Show Filter, Toggle Debugging

Figure 17. AtomicImage ReadValue response0

7. JERICHO INTERLISP

The objective of the Jericho Interlisp task is to port and extend the Interlisp

programming language and environment to BBN's Jericho personal computer. Interlisp is

one of the two major dialects of the LISP programming language which underlies most

research in Artificial Intelligence. This task services two principal goals. First, it

provides the development environment in which other DARPA supported research in

Artificial Intelligence proceeds at BBN, most notably the work in natural language

understanding and knowledge representation. Second, this task builds the foundation

for the ALEPH component of this project which is to explore novel programming

techniques and tools.

The task of porting Interlisp-10 from a mainframe to a personal computer

involves three categories of effort: 1) porting the initial system, 2) extending it to

accommodate the functional capabilities of the hardware, and 3) system maintenance.

In previous reporting periods, we have addressed each of these areas. In the current

period, we incorporated Active Values, and we incorporated a multiple-process

capability.

7.1 Act1ve Values

We have implemented a version of Active Values which is modeled on the design

used by Bobrow and Stefik in LOOPS. Active Values provide a way to invoke a function

when the value of a variable (more specifically, a SPECVAR) is set, or when a field in a

userdatatype, array record, block record, or array is either fetched or replaced. With

them it is possible to implement monitoring (i.e.: "Call me if someone attempts to set

my value to XYZ") and other event dependent mechanisms.

In our implementation, an Active Value is a datatype containing a local state, a

PUT function, and a GET function. The local state holds the "real value", which may

be another active value so Active Values can be nested. The PUT function is invoked

whenever the Active Value is set or replaced. The GET function is invoked whenever

the Active Value is fetched, except for SPECVARs where it is ignored.

PUT functions are invoked with arguments DATUM, OFFSET, ACTVAL, and NEWVAL.

OFFSET is ignored for SPECVARS, ACTVAL is the active value containing the PUT

61

function, and NEWVAL is the value to be stored. The usual form of a PUT function is:

(LAMBDA (DATUM OFFSET ACTVAL NEWVAL)

(DECLARE (LOCALVARS . T))

(s User's code here)

(PUTLOCALSTATE ACTVAL NEWVAL DATUM OFFSET)

PUTLOCALSTATE stores NEWVAL in the local state of ACTVAL which may invoke

additional PUT functionS, with NEWVAL ending up in the local state of the innermost

active value.

The arguments to a GET function are DATUM, OFFSET and ACTVAL. The usual form

of a GET function is

(LAMIBA (DATUM OFFSET ACTVAL)

(DECLARE (LOCALVARS. T))

(PROG1 (GETLOCALSTATE ACTVAL DATUM OFFSET)

(s User's code)

GETLOCALSTATE gets the localstate of ACTVAL which may invoke additional GET

funrtions. The reason for doing the GETLOCALSTATE first is to mimic the Loops nesting

in which nested PUT functions are invoked from outermost to innermost while GET

functions are invoked innermost first.

It is essential that the ACTVAL argument to a PUT function or GET function be a

LOCALVAR. Therefore. PUT functions and GET functions must be compiled. Binding a

SPECVAR to an Active Value will access the local state, not the Active Value.

A number of functions have been provided for the benefit of users.

To aid in defining PUT and GET functions, a function named DEFAVFN (NAME

PUTFLG) has been provided. If PUTFLG is T, the function provides an editor template
for defining NAME as a PUT function. If PUTFLG is NIL, the template provided is for a

GET function.

To access the local state of an Active Value without triggering nested Active

Values the functions are:

62

(GETLOCALSTATEONLY ACTVAL)

(PUTLOCALSTATEONLY ACTVAL NEWVAL)

To create Active Values, the function is:

(MAKEACTIVEVAR VAR PUTFN VAL)

which makes the current binding of VAR an Active Value. PUTFN will be invoked

when the current binding of VAR is set. If VAL is not NIL it becomes the localstate.

Otherwise the local state is the current value of VAR. (Note that PUTFN is invoked

when the current binding is set, not when VAR is rebound.)

The function

(MAKEACTIVEFIELD DATUM FIELDNAME PUTFN GETFN VAL)

makes the field FIELDNAME in DATUM active. VAL defaults as in MAKEACTIVEVAR.

FIELDNAME is the record field name as in fetch or replace. FIELDNAME can also be an

integer to allow activating unnamed array elements.

Other useful functions are:

(BREAKVAR VAR)

which is similar to BREAK(FN) in that a break is entered whenever the current

binding of VAR is set;

'UNBREAKVAR VAR)

which removes the break;

(BREAKFIELD DATUM FIELDNAME WHEN)

which causes a break when the field FIELDNAME in DATUM is referenced,

(GETAVFNS DATUM FIELDNAME)

63

which aids in looking at Active Values by producing a list of GET function, PUT

function pairs, outermost first;

(UNBREAKFIELD DATUM FIELDNAME)

which removes the break; and

(RDJOVEACTIVEVALUE DATUM FIELDNAME PUTFN GETFN)

which removes an active value, anywhere in the nesting, from field FIELDNAME in

DATUM. PUTFN and GETFN are usually LITATOMS. The Active Value removed is the first

one found whose PUTFN adn GETFN match. If only one of PUTFN and GETFN is specified

and an Active Value is found which has a function matching the one specified that

function is set to NIL in the Active Value.

If DATUM is a LITATOM, FIELDNAME is ignored. To remove an active value directly

PUTFN can be an Active Value. However, it must be remembered that passing an Active

Value around requires that it not be bound to a SPECVAR, therefore not to any

variable in interpreted code.

64

8. ALEPH

The goal of the ALEPH component of the project is to conceive and test new

ideas and tools which can aid the programmer in his task. We expect that the

capabilities of a personal computer such as the Jericho can offer new opportunities in

this area, particularly the high-resolution bitmapped display.

In this reporting period, we improved the Graphical Debugger and the Code

Presenter that were documented in previous reports, and we provided an application

of Active Values that enables users to visualize the changes that have occurred

between successive versions of software.

8.1 Application of Active Values

With the emergence of Active Values in INTERLISP Jericho we have begun to

explore their use in helping software developers visualize changes in the data

structures they manipulate. Our paradigm is as follows: a user looks at a screen in

which figural representations of the different data structures he/she is working with

are displayed. As the user's program modifies the data structure, he/she notices a

change in the visual appearance of one of the representations. From this change, the

user is able to infer effortlessly what went on, and modify his program accordingly.

Active Values, i.e.: the ability to invoke any function when a value is either read or

written on, make possible the cost-effective realization of this paradigm.

One of the visualization ideas we explored is to represent a list structure as a

tree. For example, the list (A (B C) D) could be represented as

B-C

A-/[--- 0

After implementing a set of functions to construct these trees, we experimented

with various ways of visually portraying changes of different types. As none of these

portrayals seemed satisfactory, we decided to try a different approach. Upon detection

of a change, we would invoke a comparator that, given the original list and the one

with a change- in it, would induce the procedural information needed to transform the

original list into the new one.

.5

To be really useful, this procedural information must be represented in such a

way that:

1. it corresponds closely to the annotations and scribbles a human editor
would use in order to visually convey the changes he wants,

2. it must implicitly contain the precise instructions needed by a machine
editor to carry out those changes.

Thus, comparing the lists

(A B C D E) and ((B (C)) D A)

we want to come up with a representation that enables us to portray the

changes visually as, for instance,

/\
(A JB IC)_ O []) (underlines

denote new charicters)

and capable of generating the sequence of INTERLISP editor commands,

obi 3
sbi 2 3
*(4)
*move 1 to a 3

The representation we have chosen is based on the use of annotations which are

affixed like labels to the original list's elements. The labels are MOVED-FROM, MOVED-

TO, NEW, SAME, and BLANK. For the original list given in the example above, the

representation would be:

* MOVED-FROM)LP NEW)

(C. SAME)
(RP . NEW))R P .NEW))
D SAME

E BLANK)
MOVED-TO))

6

where for clarity we have used LP and RP instead of "(" and ")".

Notice how different this representation is from something like

((A . SLANK)
(S (C)) . NEW)8e . LANK
(C . BLANK)

D. SAME)
E .SLAW)
A NEW))

The former recognizes that -- B C -- can be transformed into -- (B (C))

-- by inserting parentheses, and that A is moved from being first in the list to being

last. It corresponds to the "penciled" marks a human editor would make to convey how

to transform one list into the other in a sensible way. The latter does the job but in

a blind, brute force way: A is deleted from the beginning and inserted at the end as if

it had never been seen before, and (B (C)) is considered a new element while B and C

are deleted.

Once the representation has been induced, there are at least two ways of

utilizing it. The first one is to obtain the corresponding commands for the INTERUSP

structural editor. The software to accomplish this was designed but was not

implemented due to lack of resources. The second, and more interesting one, is to

generate from it something akin to the annotations used by human editors to convey

visually to a typist the nature and extent of the changes they want.

We have produced a package that performs a version of this visual rendition. An

example of what it can do is given in Figure 18.

67

[A L[A L (NOT (M (C N)
L (C E)))[NOT (M (F (CN)) [S T (F LL..(F (C E (M (C L)

(C N)) (NOT (E (C)E
(S (QS]
T
(F

LL ..
(A (0 C E)

(M (F (C L))
(F (C E]

(L(NOT (M(UC(CN()m C H))

(M M (C Q 1 (E)1)0)) ._____

Figure~........ 18 .rnfrigOdit e

.88

The window titled "NEW EXPRESSION" contains the result of several editing

changes performed on the list contained in "NEW EXPRESSION". The window titled

"COMPARISON" contains an annotated version of OLD EXPRESSION, where white

characters on gray shade represent deletions, and inverted characters (white on

black) represent new insertions.

In Figure 18 we show the result of reversing the comparison by swapping "new"

and "old".

8.2 Code Presenter

We have continued developing the code presenter reported in the previous

report. The code presenter is a tool that helps a programmer examine code that

usually has a high branching factor. Typically, at a given time, the programmer is

interested in a single branch or a set of related branches. The code presenter

provides two ways of looking at code that draw attention to the relevant paths in the

code. The code presenter looks at variable bindings in a hypothetical environment

and possibly in the running environment and presents the code with branches that

are relevant.to the environment in a visually distinctive way.

In the previous version of the code presenter, the code was compressed so that

the irrelevant branches were eliminated and the relevant branches were partially

evaluated. The resulting code is functionally equivalent to the original code in the

given environment. In the current version, we have extended the code presenter to

give the programmer the option of seeing the compressed code or seeing the original

code with the relevant branches highlighted.

In a given environment, a piece of code will either be evaluated, it will not be

evaluated, or there is not enough information in the environment to know whether it

will be evaluated. The last class of code is treated as two classes, code that contains

unbound variables that prevent further analysis, and code that is not available to be

analyzed (usually compiled code whose source definitions are not available). The

details of the analysis were given in the previous report. It then presents the code

using four different fonts to highlight the branches. Code that will be executed in the

given environment is highlighted in a bold font. Code that may be executed depending

on the values of bound variables is presented in a normal font. Code that can not be

analyzed is presented in an italic font. And code that will not be evaluated in the

69

W lz M IIF
OLD EXPRESSION NEW-EXPRESSIOW

[A L (NOT (M (C N) [A
(C EM L

[S T (F LL ... [NOT (M (F (C N))
(M (C L (F (C E)

C Ei
(C E)

(NOT (E (C) (0 (C N))
(Q S3 (S

T
(F

LL ...
(A (0 (C E)

I(C D))
(M (F (C L))

(F (C E]5

..........
.................

.......... Scrollabte PP W indow-

ZOE (A L (NOT (M M (C N)M U (C E)1))

................................
(S T -(-F T L20 K

M (C L)g '(C E& 1))
...
......

...= =w......... -....
......

...........................

..........................

Figure 19. The reverse transformation

current environment is presented in a small font.

Figure 20 is an example of a piece of code with a fairly high branching factor.

All examples in this section use the same code and environments as the examples in

70

(SELECTQ OBJECT
(INTEGER (SELECTQ OPERATOR

(PLUS (QUOTE IPLUS))
DIFFERENCE (QUOTE IDIFFERENCE))
(TIMES (QUOTE ITIMES))
(QUOTIENT (QUOTE IQUOTIENT))
(PRINT (QUOTE PRINT.INTEGER))
(ERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR INTEGERS")))

(REAL.NUMBER (SELECTQ OPERATOR
(PLUS (QUOTE FPLUS))
(DIFFERENCE (QUOTE FOIFFERENCE))
(TIMES (QUOTE FTIMES))
(QUOTIENT (QUOTE FQUOTIENT))
(PRINT (QUOTE PRINT.REAL.NUMBER))
(ERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR REAL NUMBER,

(LIST (SELECTQ OPERATOR
(FIRST (QUOTE CAR))
(SECOND (QUOTE CADR))
(THIRD (QUOTE CADDR))
(REST (QUOTE CDR))
(PRINT (QUOTE PRINT.LIST))
(ERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR LISTS")))

(ERROR OBJECT "IS NOT A KNOWN DATATYPE"))

Figure 20. Code segment parameterized by variables OBJECT and OPERATOR

the previous report.

The code in figure 20 is parameterized by the variables OBJECT and OPERATOR

and is intended to return the name of the function which performs the prescribed

operation for the given object type. For example, the PLUS operator for the INTEGER

object is IPLUS. Since the figure shows the code segment displayed when both

variables OBJECT and OPERATOR have no value, the entire code segment is printed in

the normal font.

Figure 21 shows what happens when the variable OBJECT is bound to

71

REALNUMBER and OPERATOR is unbound. Notice that the outer SELECTQ is in bold face

to signify that it is evaluated. and so are the parentheses around the INTEGER case.

The contents of the list, however, are in a small font to signify that the INTEGER case

will be investigated but will fail because INTEGER is not the same as REAL.NUMBER.

The REALNUMBER case is in bold face as is the SELECTQ it contains. The cases of the

inner SELECTQ are in the normal font because the variable OPERATOR is not bound.

The code presenter can not determine which of the cases will execute in an

environment with OPERATOR unbound.

(SELECTU OBJECT(¢uu(a.COmis
(N, (U=4 inRu)

(PLUS (QUMI PLUS))

(N= fms r))
(Stin,, (oUn *uown))

("M ("oM SPAWE))

(moad smis. s m usmus oo ran nmE-)))
(REAL.NUBER (SELECTQ OPERATOR

(PLUS (QUOTE FPLUS))
(DIFFERENCE (QUOTE FDIFFERENCE))
(TIMES (QUOTE FTIMES)
(QUOTIENT (QUOTE FQUOTIENT))
PRINT (QUOTE PRINT.REAL.NUMBER))
(ERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR REAL NL2BER:

(LiSt (S ECTO O okIs.

(!'ST (SUSo CM))
(sCoN (WTS CNa))
(IM (Oot CamS))

(I (OUE Ca))

(PUS? (*Aft PanusJ))

(UAW1 oeAtoR V AN UI OP (3101 roA LISTIS-)))
(130" OBACT -1S NOT A MUOh DATATYPI))

Figure 21. Code segment with OBJECT bound to REALNUMBER and OPERATOR unbound

Figure 22 shows the code presented when OBJECT is bound to REAL.NUMBER and

OPERATOR is bound to TIMES. It shows that the branch to be taken is fully determined

72

end that the value returned will be FTIMES.

Scrolabl Windo 0'-iil ~,

(SELECTO OBJECT
(Womg (Soflop ptO

(PLuS (CUM PLUS))
(OTMII= (UO! O aMJu))

(nets (9UO! MeS))
(ONlos? (Q UO wU.n))
(P = (QUOn P solat!.))
(WA00 OPCMTO AN WAINO OPMaATOA rWANEM-)

(REAL.NBER (SELECTQ OPERATOR
SPLUS (QUO? TpLut))

wra " FAME))(7OEIS (QUOTE FT 4ES))

(P~sr (UO?! PMNA.aM6cR))
(MAN QMMTON - W mma Omtoa foot AM M,-2)))

(LST (SECLCTO OpW 05t

(row (Qo CAR))

(liCMs (QO Cai))

(TM (WQO CAO))
(E31 (QOn Sm))
(PWT (QO pa"misT))

(EEOS ORO - AU NOI OPEETMIOR US S?!)))

(UMS COCT '" NOT A M$01, DAATt))

Figure 22. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR bound to
TIMES

Figure 23 shows the code presented when OBJECT is unbound and OPERATOR is
bound to TIMES. Notice that the path in each of the inner selectqs is fully

determined. The outer selectq can not determine which branch to take in the given

environment. In this example, one of four values will be returned, ITIMES, FTIMES, or

one of the two error statements.

The Code Presenter is currently running in Jericho INTERLISP and it can handle

most INTERLISP functions including display oriented functions. It has proven to be a

73

(SELECTQ OBJECT
(INTEGER (SELECTQ OPERATOR

(Pus (QM Vtus))
(ww,= (Ow?: etv,,mc))
(TIMES (QUOTE ITIMES))
(aworv" (Qm uoit WAm))
(~~. (QO?:9 PftmilJlp))
(mAR ccmim , - ON , oe .tem.)))

(REAL.NLMBER (SELECTQ OPERATOR
(Pmu (Qown rftus))
(wa.c (On FWTK))
(TIMES (QUOTE FTIMES))
wonJmv (Q oF TKWST))

(Paw (on Pmo. .MtCR))
(im VOM ,IOR IN M ma oc foe ro o mt4ISs.)))

(LIST (SELECTQ OPERATOR
(rus (Owl cm))
(smoss (UmO =Cm))
(um (OAW? M=))
(a (O W? C))
(P.m (NM PM.u))
(ERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR LISTS")))

(ERROR OBJECT "ZS NOT A KNOWN DATATYPE"))

Figure 23. Code segment with OBJECT unbound and OPERATOR bound to TIMES

useful tool for analyzing and debugging complicated functions that the user does not

fully understand or that have a non-trivial logical bug.

One limitation of the Code Presenter is that it is not a passive tool -- it

requires that the programmer set up environments and select code to examine. Both

are trivial to do but the programmer must examine the code and decide what variables

to bind in the environment.

Another limitation is that neither method of display (highlighting or compressing)

is really enough to do the entire job ,lone. Highlighting of a large complicated

function can be hard to read. And the compression of a large complicated function

74

does not resemble the original code. Clearly the ideal solution is some combination of

the two methods. Unfortunately we were not able to try to combine them. It would

require a great deal of research to determine a useful balance between the two. The

balance is a function of the complexity of the code, the size of the code, the

restrictions implied by the variable bindings in the environment, and the programmers

ability to comprehend the size and complexity of the code presented.

A less important limitation we encountered is that the INTERLISP printing package

was not designed to handle fonts properly. We were able to obtain the output shown

here only by improving the PRETTYPRINT package but it is obviously not perfect. It

does not handle line height properly when fonts are of different heights. Printing

characters in different fonts can cause overlapping characters both vertically and

horizontally.

75

9. IE II I AITENA CE

During this period work on the Hermes electronic mail system program was

routine maintenance.

77

DISTRIBUTION LIST

.3ji c r es s s ruIb e r

cf copies

T h,)m S F. a r e n ce1

-A)C c) C~

0 .4a C/COVL

GRIF FIS S AF9 N'Y 13441

A ',C / CAP
Q rTFFI S AFS NY 13441

41)" IN IS TPA TCP
Ec TECH INF CTR

-T T 1: DTIC-DD -1
CAvEcCN STA EG 5

AL-XANDRIA VP ;2304-e145

abC/CCTt

3 I IF FISS AFB NY 13441-579C

AFCSP/I ANI 1
*t I : Miss Crif fin
1,;36 7 ertigcn

as h CC C'C33C-4?5

G o A C/ !CT T1
0 -nt acon
,dS i ;D, C 2 C 33C- r,1 C

0 e--t a.cn' 4 r)-?6 7
- - D C ?(3 3 C-l190

C IzECT R

1
! %N~TC

1-T T': S CSI"
s h CC 2C315-l C7O

DL-1

~ire c'or* Irfc Systerrs1
0 A S (C31)

- 3 E1IP7

'.ash CC 2C301-3C40

F L pt A n aLy si s Center
Attn: GICEP Cceraticrs Center
Codie 20G1 (E. gicharcs)
Ccrora CA 91?2C

HO AFSC/CLAE
fNDRE ,S AF9 CC 2C334-500C

HiQ AFSC/XRT1
tn-lribs tAF9 PC 2C334-500C

HG AFSC/XRK1
A N.)ktltS A F8 AD 2C3 34- 50 0

SA(/ S CF T
F F UT T A FE NE 81 13-50 01

Q- E SC/ Do Q 1-
t t n: Fred Lacwig

33n brtoria TX 7E243-500C

TcSAIP GEE1
'TTN: LARRY G.NCMANLS

SYALE STREET SE
iroc rt F Laza, Stite 102

6LCLUERCLE NK 87106

.H') rACIDFIy
It itn : Mr .We Et e rman
L a nqIe y AF 9 VA ?36 65-53 01

DL- 2

HOl TACIDCA

LANGLEY AFB VA 23665-5,301

HO TAC/DPCC
LANGLEY -FB VA 23665-5001

-i' TtC/RCA
LANGLEY AFR A 23665-5001

AS)/ F.EMs 2
rri 3ht-Pat terscn AF8 C H 4543 3-65C3

ASD-AFALC/ AXF
WRIGHT-PATTERSCN AFB CH 4 5433

AS / / FALC/AXAE
At tfl: 4. H. Dungey
4ri ji t-Fat tersor AFE Oh 4.433-6533

A S r / EN A M I
1 riqg t-Patterscn AF8 CH 45433

f, FIT/ L DEE
ULt'ING 640, AREA Q

A -6T? ATTEPSC% AFB CH 4 5433-653

F'WAL/mLFC
R , -Pt APFR C H 45 43 3 -65 3

L F A /N L T E
. ,HT-ATTERSC\ APR C1- 45433

- T- TTELSC% AF 3

DE-3

AF'iAL/FIES/SLR IAC
'RIGHT-PATTERSCN AFB CH 45433

A A L/ HE
% RIGI.-PATTERSCN AFB CH 45433-6573

Air Fcrce Hun'ar ResoLrces Laboratory

Techrical DocuTerts Center
'FHRI/LRS-TDC
%ri j t-Patterscn AFB CH 45433

'75nl AW/SSLT
RIdg 262
Cost 1 Is

Wright-Patterscn AFB CH 154433

!F4RL/OTS

'IL'LIAMS AFB AZ e524C-6457

I R43EIG/ EIEM
u ICKf- AFE HI ;6F54

AUl 'LSE
1

,'.A ELL AF 9 tL 36112-5564

HQ AFSPACECCN/XPVS
ATTN: DR. WILLIAM R. MATOUSF
OETEPSON AFB CC E0914-50C1

3 ? krT I G/ E IS S
t tin: TSct kirk

LackL a n AFB TX 78236

DL-4

fersa Ccmmunications Engineerirng CtrI
Tachricat Litrary

R-stcrVA 22C9C3-5500

COMM'AND CONTFCL AND CC~tf'LNICATIONS DI 2
)EVELCDMENT CENTER
"AFPINE CCAPS Dfvc LCPNENT & EDUCATIO-N COMMAND
AT T%.: C cc E c Ic A
I UANT ICO V~ A 21 34-5OE

A~FL'.%C/LGY1
,4TT-\%: CI-, SYS ENGR CIV
3-UNTcR AFS AL !6114

!J. S. Army StrateGi c Cef erse Ccn'mand1

3.0. Eox 150C
Hun-tsviLte AL 15PO7-18O1

COMANDING OFFICER I1
NAVAL AV]CNICS CEKTEA
LjcBRaRy - D/765
INDIANAPCLIS IN 46215-2lP9

CO-mMANDING OFFICER1
\.AVAL TRAINING SYSTEIVS CENTER
TEC.HNICAL ItqFCF,'ATION. CENTER
Iu L ING 2.06E
'kLAID0 FL 3281 3-710C

C 0 1 N)ER1
RAVAL CCEAN SYSTEMvS CENTER
A TTtv: TECHNICAL LIBFARYp CODE 9 42B
S6~ AlI0EGC CA 97-1%-5COO

COMmANDER (CODE 1-433)
ATTN: TECHNICAL LIBFARY
N AV AL WEAFCNS CENTER

H 1N~ L AKE* CALI FORNIA 9355 5-6001V

S U 1E 1 %T E hD ENT (C o E 14 2 4)
'.IVLA POST GP CUATE SCHOCL
Y 3N FREY CA S3943-5Ot C

DL- 5

COmMANDINC OFFICER
N:AVAL RESEARCH LABORA70RY
ATTN: CCDE 26?7
IWASHINGTCK DC 20375-5000

SPACF 9 NAVAL 6AFFARE SYSTEMS COM10AND

A T TN: R. AVARESE
' ASH ING TCN CC ?0363-510 0

C D R, L. S. A R Y WIS SILE CCM MAND
QEDSTCNE SCIENTIFIC IKFOR?#ATICN CENTEF
ATTN: A SMI-RC-CS-R (DOCUM~ENTS)
QF.DSICNE ARSENtL AL 3589P-5241

ddvi sc ry C rOLP or~ Etect ren D v ices
Ham mcrd Jchn/Te ctnic at Ir fc Coo rci natc r
;'Cl Varick Street.. SLite 1l4C
New Yfcrk NY 10C14

UNIVERSIlY OF CALIFCRIA/LOS ALAMOS
N ATICNAL LABCRATCRY
ATTN: DAN BtCA/kEP0F7 LI89APIAN

SEOX 1662 FMS-P3#64
LCS tLAMCS KP 87545

RANDt CORPCRATICN THE/LI8FARY
HPLFFF rCRIS S/IEAO 7ECP SVCS
c.1I. E X 2 13

dr1'C LIE6FA~y (TECH REPORTS FILE)

IRN0L0 AcS TN '-738;-q;9 1

Ft Huach~ca AZ 85613-600C

ICT LIaRdRY/10A SECTICN

110 INDE E NDENCE AVE . S.'.
,WASH DC ?C591

DL-6

1839 EIG/EIET (KENNElIF 6. IREY)

reE ESLER AFB iVS 3S534-634,

J T FPIC
't tn: Technical Director
15fl0 Ftanrirg Research Drive
k'cLean V6 221C2

HG EEC/C~pp
Sar rtcrio TX 7E243-5OOC

A FE ',)C/ES PI 4
S4% aNrCNIC TX 7 243-5lOC

48S EIG/EIEk (^.YC)
t:.IF FIS S AFB NY 13441-6348

'T TN: A f, \ SYS D EV
H a S CCN ~F 13A C17 31 -500 C

E Sr/ !C P
-jS~ AF8 PA O1?31-5CJor

~L G 17 04
.-ANSCOM~ BF9 NA (11731-5,9OC

l~E!C SYS-2
'NSICC AF8 vA 01731-500C

F S D / T C D-'
A T T 1 CIFTA!N J. MEYER
HANSCOM AFB NA 01731-500C

DL- 7

Tho Scftware Ergineering Institute
At tn: Major Dan Burtcn, USAF
S80 Scuth. Aiker AvenLe
Pittsturch PA 15232-1502

DIRECTOR
N S A/ CS S
-TTN: T513/TDL (DAVID MARJARLw)
FORT r:EORCEE %EADE C 2C755-600C

n IREC1OR

%S A/CSS
4TTN: w166
cORT GEORCE E EADE D 2C755-600C

' IRECTOR
NS A/CS S
.ATTN: R-E31 (MR. ALLEY)
FCRT GFOREE C NEADE N 2C7 5-603C

DIREClOR
N, S A/CS S
ATTN: R 24
FORT GEORGE G EADE NO 2C755-6000

DIRECTOR
k S A/CS S
AT TN: R21

1 00 SAVAGE CA D
FORT GEORE E C ,iEASDE ivo 2C755-6000

DIRECTOR
P,3 8/CS S
AT'r' : DEFSMAC (JAMES E. HILLMAN)
FCRT raO CE C mEADE P 2C755-600C

D IRECTR
N S A/ CS S
AT TN : R31
FCRT GEORGE G MEADE FD 20755-600C

r' IPrC1 0, R
'SA/C$S

AT T ,J: 5p
FORT GEOFEE C PEADE C 2C755-600C

DL-8

DIRECOR

N S A/ CS S
ATTN: RE
FORT GEOCEE G EfDE 'C 2C755-600C

!'IQSCIOR

N's / Css
ATTN: SC31

FORT GEOREE C NEADE vC 2C755-600C

SI RETOR

N S AICS S
.TTT14: S21
FORT GF-OPEE G hEADE 'C 2C755-6rCC

PI RECTOR

IN s A/ Cs s

'TTN: V33 (S. Friedrich)
FCRT GEOPCF C NEADE W D 2C755-600C

"I I RECIOR
% S A/ CS S

IT TN : ,r7

rORT GPORCE C NEADE P'C 2C755-603C

, IPECTOR
NSa/ Cs S

T TN : W3

FO T GE 1RE E EEADE . C 2C755-600C

1) 1 re C C C
\3 A/ CS S
l.-r T % : 952"3

PCRT GECPEE G EADE PC 2C755-6CJC

'ef CCOPUIEk SECLRITY CENTFR
AT T*J: C4/TIC

'1 SAVtCE ACtD
;CRT CEOREE C EADE C 2C7S5-603C

L.r rv C. F rsdick

3 ,' L~boratorios Inc

'..Cultcr Street

3 r

DL-9

jcn Silvermar
Hce Incc rpcrateo
Cccrate Systems De%,etcrment Center
1OnO eoore Averue (NCrth)
Gctder VzL Leyo, MK 5 54?7-4 437

J a mes R i ch arcscn
H cney,*L tIntrcrrcratec:
C crpcrate Systonis De',e Iop r en t Center
10)j~ Eo ore Averje (.Ncr t h)
11 Ld er Va L Ley* MN 554?7-4437

r. DCLg Las J, rs-,r *
Carci e-N -L Icr Lniversity
rnrt-rer~t of Ccirput~r Scien~ce

Fcniertey Fark - L.ean H-al
; it tsturc, P4 51339

Jcse.-t Lugo
'-arris Ccrooraticn
Gcv-rri~ert Irfcrfiaticr Systemrs
Mil.* 151S,p Jo~n Rodes EcuLevard
"PItbCurne, FL 32935-574C

P --t- . Mv*L L ia r-3'P i t h
University of Catiforria (UICES)

et.c-f Electricat arc: Computer Engireering
Sant a rara. C A

3 1 0 6-()r) C1 -

Teresa F . L u rt
S ; I I nt er n at o r a
Ccminuter Science Laboratory
< 3 q verswocc A,.e nu e
%rent c Dar k, CA ; 4C4C-1234

rr- Crcmar1ty
1--varc-a C-cisiors Systprrs

'1 S ar Ir t cr ic C ir c Le
'c un t a i n C i 9 1C 4 0- 1?3 4

L -3 n L aza r r a
kriowtEdge System Concepts
767 Liberty C~jza
pcle NY
1 34 47-4 46C

::auIj C. StaC cur
-2ny6-tl I l.ccr~cratec
Secure CcrT'zutirg T,-c~roLcgy Centor
3uite 13CP 2F55 Antncry Lane (South)
St. fnthcriy. MNk 55418-3;65

DL-10

:ich~rl Schartz
:3ott Eeranek arc Newmvan

1') M'ouLtcn Street
Cambridgeo MA 03238-0,101

-3 t t ew 9c r gen s t1?r n

ro-;quter SciEnce Labcratcry
' a var swo cd A ve nu f

Mendc ParxK- CA 4325-3493

L4 e -ry Letfko0v it S

4arvarAd Cepot goaa
r i. 'ox

u Frvir, IvA C1451--'Th51

1:ichardi Le9Lank
:3eorqia irstitLte of 7pctnctcgy

SchocL of Irformatior anc Comp~uter Science
7'>5 'kcrt? Aver~e
,'tLarta, GA 2 C3 72- 02 8O

r 3ri f A . W he el(er
P AR Gcverr-nert Systems Ccrporaticn
PA 7e chrc togy Park
7 ?.,' ceneca Turrpike

P w Iartfcrco NY 134.13-1 191

a r i P 3d cur i
P-on, yieLt I Irccrpcratec
Ccrcocrate Systems Di,6isicr1 (!IN63-CCC)
"131 Eo o -e A ve u e (,Nc r t)

~cLter valeL TsPN 554 27-4 437

J u~iar C~rter
,yn~vics ResearctP Ccrroratior,

.- Frcntace Aca

S te ve V ir t er
~?ctt Eerarek arc Newm~an
II Laboratories
%013 ~ct.Ltcr St rpe t

rCatbriaget mA 02?2 38-(0'1)0

!-,itaS>S Ccoratc

/ , t t 0 Ov - LC 1:fer t USr cup

i7 9 1 Canmiro guiz
C amri'riL Lcf CA 9 3 C10 -E 60 1

DL-11

qon ceterson

Yqrtir Marietta Aerospace

P. 0. Bo0X 175
Denvep Co PC?01-01 79

I,'ehora h le asca (e
\ avat Ocean Systems Center CNOSC)
C c re 443,271
C a a Lina EouLe vard
.3an ri -xqc # CA 921 52-500OC

5'.cre 'ar i L'c r g
'If f i ce of NJaval L esearch
C -e 311 1 - qocm 704

~c rt Quincy Str-eet
~r tirctor* VA 2? 217-500 C

-- ra Lc Caprara
'(al.ar Sciences Ccrporaticn,
?5F Ceresee Street
U;t ic a, N
1 350-,--4636

1 . Thcras H-aigt
-cri-yeL t Inccrpcratec
S!.TC (Suite 13C)
7995 Ant~cny Lane (Scuth)
St. Anthcry, RK 5541E-3?65

)i.ne Smith
CcrrpLter Cor~orati cn cf america
F cjr Camtridge Center
Cambridbe, o
n 143-1 4F'9

Vike Frairk'L
L-, Int ernat iorat

I r r-at ic, Sc ierces a7 'c TechncLc'gy CEnter
V5~ 1 cav-?rswoc Avenue-
I-'entc -'aIrkp C.A 94C25

rcAL. Alex Lancaster
Deferse Acvarcoa Research PLanrirg Agency

1490 6itson EoLtevarc
Ir L icton, VA 72?709

Jr0 Ifn Cam el L
.a i cr 3 S e CLr it y A 9e rc y

i , 'i '3 Eavage qoad

DL-1 2

Pat r ici a Easkif-ger
ITT ;esearch Irstit u te
Ti.urir Roac (North,)
P . 0 . 9ox 1 8C
Pomre* NY 1344C-C180

Lt. Eric Set'ret t
cL-ctronic Systems Division
ES C/AC-N

C 1731-';O0C

varvir Schaefer
Tr'ustEd Information~ Systems

-I B * ox 4&5

'11 73 f

Picharc; C. 6hite
Datatccic Systems Irnccrpcratec
C uit e flCq

P, Carscm Street
Tcrrarce, CA ~C 503

Pichard ctatCK '

Odyssey Researcm Asscciates
1223 Trumansturg Roac
Ithacar Ny
1495C-1 313

udi Craf
Uirit r-c S tates Armfy

r-- 0 L - - 10
F t. ~c r~ct.t h J C7 7C

... -3j iclaeL Smith
1int Stratecic TargEt Ptannirg Staff
J S'Pr/J<Sp
rf f ut t A F 2 E
' 1; 1 7 - 9 1"0C

Po'bert Leary
D e -r s - Cc mmnu r ic at io rs A qen c y
D C .A / C 4 S
1919 Isaac Ne~tor, ScqLare
Pestcrp VA 22CYr-r3C3

a r t ir ;-:r iet t a A er o s 3C e (LC475)
0 'Ox 17;

vvrCC ~C.;U-C1-(

DL-13

C it r. Lirr
Ir-,ti tu~te fcr Cetense Anatysis
I q 91 E eatr ega rc St re et
A Lexandria#- VA ?231 1-1772

D u ine %~o rt h Ct t
C arn f c ie-P eL [c r L n iv ers it y
I :) nartmert of Coffputer Science
^ char Ley a r k - lean p aL L

-' 1 Lan Seresey
Lritec States Army
C E 1^0

!N;SEnR0-C3t-,NJ 77

All ti. Y Srrth NjC7C3

'ITRF Corporat ior
6 as h ir It cr - 14 p7 52 5
CoLd Shaire Crive
*VcLearp VjA -)2 -

Lojanra ctari iacomlo
Uri s y C c rco rat i cn
7;:19 6pstpark Crive
*McLearp V~A
2 2 10

John Iv. ;Lshty

on~terScience Labcratory
~ averswoca Avenue

nL c ark , CA 402 5

or r Y1a ya r c
T~T R P Ccrroratior

w tc rk Te chc tc y Sys tervs Departmnent
:)O ~ x 7nv

oi f cr I, ~A 017!C-,-2CR

Te r ry V . C . e -ze L
T h a1 TiIRE C cr ;cr at io r
"I S 33 311
9 u r (imntcn kcac
~e .f c r ! 0177230

c h cL 3S C . Nu r a y
A A :

'\ASA Lancl-y Research Certer
Pa",otcne VA 2.!667

DL -14

Steve Crccker
Trjsted Irforrration SsterrS
I I 34C West OLyffric Bculevard

Suite ?65

Los 4rqetes, CA 90964

zch0rt Sccui
-Z S,)/A T S

Les trderson
3 vat L 'cea n Systemns Cfr ter (NCSC)

*c .e 4 !. 3, ; 7 1
C a lin 3 E o uLe\ar
Sa C a i e , cp U _-152-5 CC

/ IO/I-EY (LTC Scwa)
Tht Fentacon
1,,.3nir-tcr jDr

C3i; 1 - 71r, C

lrO/;1:I-?I (Cart Hart)
The Pentacon

L ashir;tcr DC
3 r) 1- 7 10t* C

c IO/PI-EP (LTC Rindt)

b'.o0,iritcr DC

T A (S)IC Litrary)
t .l e rt Perel La

I 'I North Beauregarc Street
t- x -a r Jr ia V A

7?31 1

p p / 4

TC ze' rCreerway

3S r tcr DC

F S C/C V- D

LTC r lyn r
, nore s AFB, YrC

DL-15

!,c SDixR
CoL 1-eimach'
P.* 0. 9ow 5256C
i ortckay PostaL Center
Los 5raetesp CA 900 C S-2q6O

P 0. 9ox S?q6C
'AorLc~ay Postal Center
Los Argetesp CA 900CS-2560

Cct I-chmyar
P. C0. Fox 92q6C
,.orluay Postal Center
L os 8rgjetesp CA8 ;Onfl-?96C

H 0 Sr/ CN CI S
L TC 9 ennel L
P. 0. Box q? 6C
6or~ckay Postal Center
Los Arg, Lesp CA 900O%-256l

*0. ? 0x 9?q6c
-ortc;.ay Postal Center
Lcs ArgeLeso CA 9O0CS-2 6O

r . C0. Sox :)2 6r
' zrLc-.ay Fostal Centar
L cs Aree. Ca 9 TOC S- 2 q6

r- 3. Po ~c;6C
vcrLc;.y Postal Center
L as frieLesp Cl 9009 -?960

Hansccnm AI M1A
rl 1 731-5OrCC

L T . L- le r te rc
H ansccm AF;3, NA
S17 3 1 -s;r'C

DL-1 6

4I;~t ~i-
R0'I -2o os~a -CI N-b1SIs UE P sONAL COMPU1KER-RSED

I INFORMATIONi SYSTEMS YOLUM.. (U) BON LARS INC CAMBRIDGEr

1 WC1ISjSFlEJD WC-TR 9S -1 9- F 2 F/0LI 12/7 NL

III0

14. 1328 1.

:7.M j3 j2.

M1 11111- 0

"ii 1. I II II 1.

11111_.25 111 . r .6

CeOt LI%,

Hatnsccm AFSP P~A
r 171 7- 500 C

A F STC/XLY
LTC retucci
Kirttand AFBe NY.
S71 1 7

1S iS C / C AS D- ~S F
Larr> Tatts

W u nt sv it Le # AL

ANSEP Corp

CrystaL Cateuay 3
1 215 Jefferscn Davis h-ighway

.1 FITE C/IXPF
Cact roteL
V irtLarid AFBo KM
c 711 7

IF Scace Comrara/XPXIS
Detprson AF3P CO

%O1 £-1 C 1

1 irector NSA
4 1 Cecrce Hocver

S'V Sav z Ge 0 a a
Ft. C eo r qe G. e ade P ~D
?C 75 5 - f) 00C

DL- 17

LLMD

D,~EFLI

hL/V1t

3~7

DIG

